Les changements climatiques au Nunavik et au Nord du Québec:
L’accès au territoire et aux ressources

Rapport Final

Présenté aux
Initiatives des écosystèmes nordiques
Environnement Canada

Soumis par :

Martin Tremblay et Christopher Furgal

Service des Ressources renouvelables - Administration régionale Kativik
et
Indigenous Environmental Studies Program - Trent University

Kuujjuaq
31 mars 2008
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008

Service des Ressources renouvelables
Administration régionale Kativik
C.P. 9
Kuujjuaq (Québec) J0M 1C0
Téléphone : (819) 964-2961 Fax : (819) 964-0694

© Service des Ressources renouvelables, Administration régionale Kativik, 2008.
Table des matières

Table des matières .. 3
Liste des figures .. 5
Liste des tableaux ... 6
1. Renseignements généraux sur le projet (1.) ... 7
 1.1 Nom du projet (1.1) .. 7
 1.2 Chefs de projet et organisation (1.2) ... 7
 1.3 Équipe du projet (1.3) .. 7
 1.4 Date de commencement et d’achèvement du projet (1.4) .. 7
 1.5 Emplacement du projet (1.5) .. 7
2. Résumé (2) ... 8
3. Introduction ... 9
4. Région du projet .. 11
 4.1 Les communautés Inuites .. 11
 4.2 La communauté Naskapi de Kawawachikamach ... 15
5. Objectifs et résultats du projet (3) .. 16
 5.1 Documenter l’impact des changements climatiques sur le réseau des sentiers et les adaptations pour l’accès aux ressources et au territoire (3.1) .. 16
 5.1.1 Les moyens de transport et l’utilisation des sentiers ... 17
 5.1.2 Les changements climatiques en cours ... 20
 5.1.3 Réseaux de sentiers .. 34
 5.1.4. La connaissance de la glace (3.2) .. 38
 5.1.5 Adaptations en cours (3.2) .. 55
 5.2 Évaluer les futurs impacts potentiels des changements climatiques sur l’accès au territoire et aux ressources par des scénarios climatiques et des suivis communautaires (3.1) ... 57
 5.2.1 Le suivi de glace (3.2) .. 57
 5.2.2 Stations météorologiques (3.2) .. 59
 5.3 Partenariats et renforcement des capacités dans le Nord (3.3 et 3.4) .. 65
 5.3.1 Implication du chercheur local dans le projet ... 67
 5.3.2 Rencontre d’équipe .. 68
 5.3.3 Rencontres dans les écoles ... 73
 5.4. Nouveaux partenariats et initiatives internationales (3.5 et 3.6) .. 68
6. Produits (4.0) ... 69
 6.1 Site Internet .. 69
 6.2 Les cartes électroniques ... 71
 6.3 Guide de bonne pratique .. 76
6.4 CD interactif .. 76
7. Communication (5.0) .. 78
 7.1 Affiches .. 78
7.2 Conférences ... 79
 7.3 Entrevues ... 80
 7.4 Publications scientifiques ... 83
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008

7.5 Rapports d’étapes .. 84
7.6 Ateliers .. 85
8. Conclusions et recommandations (7.0)* .. 86
8.1 Recommandations pour un accès sécuritaire au territoire .. 86
8.2 Bilan du déroulement du projet et recommandations pour des suites au projet 88
8.2.1 Déroulement du projet: Points positifs ... 88
8.2.2 Déroulement du projet: Points négatifs .. 89
8.2.3 Recommandations pour des suites à ce projet ou pour des projets similaires . 89
9. Conclusions générales (7.2)* ... 91
10. Remerciements .. 93
11. Références .. 95
12. Les partenaires .. 98
13. Signature et date ... 99
Annexe 1: Carte régionales en format 118 x 152 cm .. 100
Annexe 2: Terminologie de la glace inuttitut ... 113
Annexe 3: Exemples de questions posées par les étudiants des écoles du Nunavik 121
Annexe 4: Guide de bonnes pratiques en hiver ... 123
Annexe 5: Publications scientifiques ... 133
Liste des figures

Figure 1: Six communautés du Nord du Québec font parti du projet de recherche 12
Figure 2: Sentiers de traîneau à chiens et de motoneige .. 18
Figure 3: Superficies englacées des baies d’Hudson et d’Ungava au moment de l’englacement et du déglacement ... 22
Figure 4: Température moyenne annuelle du Nord du Québec 23
Figure 5: Température moyenne hivernale à Inukjuak ... 24
Figure 6: Température moyenne estivale à Inukjuak ... 25
Figure 7: Glace de mer dans le détroit d’Hudson le 10 février 2008 27
Figure 8: Embouchure de rivière dans le détroit d’Hudson le 28 février 2007 28
Figure 9: Sentier alternatif de motoneige à Kangiqsualujuaq 29
Figure 10: Les conditions météorologiques sont maintenant plus difficiles à prédire ... 31
Figure 11: La circulation maritime en hiver dans le détroit d’Hudson 33
Figure 12: Activité de cartographie des sentiers et des zones à « à risque 36
Figure 13: Activité de validation des sentiers et des zones « à risque » 37
Figure 14: Oscillation arctique pour la période de 1950-2005 47
Figure 15: Protocole de mesure adopté au cours de la saison 2005-2006 61
Figure 16: Suivi de glace à Kangiqsujuaq pour la saison 2006-2007 62
Figure 17: Deux stations de suivi de glace de mer ... 64
Figure 18: La relation entre la somme de degrés-jours de gel et l’épaisseur de la glace de lac .. 63
Figure 19: Le site Internet du projet ... 70
Figure 20: Cartes des principaux sentiers entourant certaines communautés du Nunavik et du Nord du Québec .. 72
Figure 21: L’atlas électronique identifie les sentiers traditionnels des secteurs d’Akulivik, Ivujivik, Kangiqsualujuaq, de Kangiqsujuaq, de Kawawachikamach et d’Umiujaq....... 73
Figure 22: Carte régionale d’Umiujaq ... 74
Figure 23: Cartes détaillées du secteur d’Umiujaq ... 75
Figure 24: Conférence Zone côtière Canada 2006 ... 82
Liste des tableaux

Tableau 1 : Nombre d’entrevues par communauté... 35
Tableau 2 : Principaux facteurs qui influencent la dynamique de la glace....................... 42
Tableau 3 : Phases de la glace de mer en période de fonte dans un environnement sans courant... 54
Tableau 4 : Phase de la glace de mer en période de fonte dans un environnement avec courant.. 54
Tableau 5 : Liste des partenaires et leurs contributions.. 66
1. Renseignements généraux sur le projet (1.) *

1.1 Nom du projet (1.1) *
Les changements climatiques au Nunavik au Nord du Québec : L’accès au territoire et aux ressources.

1.2 Chefs de projet et organisation (1.2) *
Martin Tremblay : Chercheur et chargé de projet, Services des ressources renouvelables, Administration régionale Kativik, Kuujjuaq, Québec.
Christopher Furgal : Chercheur/Professeur, Indigenous Environmental Studies Program, Trent University, Peterborough, ON.

1.3 Équipe du projet (1.3) *
Caroline Larrivée : Spécialiste, Consortium Ouranos, Montréal.
Tuumasi Annanack : Chercheur local, Administration régionale Kativik, Kangiqsualujjuaq.
Noah Swappie : Chercheur local, Nation Naskapie, Kawawachikamach.
Jack Niviaxie : Chercheur local, Administration régionale Kativik, Umiujaq.
Eli Angiyou : Chercheur local, Administration régionale Kativik, Akulivik.
Markusi Qiisik : Chercheur local, Administration régionale Kativik, Kangiqsujuajuaq.
Jean-Pierre Savard : Chercheur, Consortium Ouranos, Montréal.
Michel Allard : Professeur/Chercheur, Département de géographie et Centre d’études nordiques, Université Laval, Québec.
Michael Barrett : Directeur adjoint, Département des ressources renouvelables, Administration régionale Kativik, Kuujjuaq.
Violaine Lafontaine Mme Lafontaine était la chercheure principale du projet au cours des 2 premières années du projet.

1.4 Date de commencement et d’achèvement du projet (1.4) *
Avril 2004 à mars 2008

1.5 Emplacement du projet (1.5) *
Emplacement : Nunavik et Nord du Québec.
Écozones terrestres : Taïga, Cordillère arctique, Nord arctique et Sud arctique.
Écozones marins : Archipel arctique et Nord-ouest atlantique.

*Note : L’astérisque identifie les sections principales présentent dans le modèle de rapport annuel proposé par les Initiatives des écosystèmes nordiques d’Environnement Canada.
2. Résumé (2) *

Le projet porte sur les changements climatiques et l’accès aux ressources et au territoire au Nord du Québec. Cinq communautés inuites (Akulivik, Ivujivik, Kangiqsualujjuaq, Kangiqsujuaq et Umiujaq) et une communauté naskapie (Kawawachikamach) sont impliquées dans le projet de recherche. L’objectif principal du projet est d’aider les communautés à documenter les impacts observés des changements climatiques et environnementaux en cours et de développer des stratégies d’adaptation permettant aux communautés d’atténuer les impacts négatifs sur l’accès au territoire et aux ressources et d’augmenter la sécurité lors des déplacements sur le territoire. Le projet communautaire réunit à la fois le savoir traditionnel et scientifique. Le rapport présente plusieurs informations relatives au savoir traditionnel sur les sentiers (estivaux et hivernaux), la glace, le climat et l’environnement dans un contexte d’accès au territoire et aux ressources et de sécurité humaine. De plus, le rapport présente les résultats de l’analyse scientifique du développement de la glace en milieu lacustre et marin. On y retrouvera les principales conséquences des changements climatiques en cours sur l’accès au territoire, les principales adaptations déjà utilisées par les gens des communautés et quelques recommandations pour atténuer les effets négatifs liés au réchauffement climatique en cours qui sont semblables à l’ensemble du territoire.
3. Introduction

Les réseaux de sentiers dans le Nunavik et le Nord du Québec sont très importants pour les populations locales. En plus de fournir des liens entre les communautés qui composent la région (aucune route n'existe dans la région et le territoire est seulement accessible en avion ou en bateau), les réseaux de sentiers sont employés pour effectuer les activités traditionnelles de récolte de subsistance comme la chasse, la pêche et le piégeage. Les activités traditionnelles demeurent une activité importante pour des raisons économiques, culturelles et alimentaires (Myers et al. 2005). Le réchauffement climatique en cours affecte la sécurité et l'accès au territoire et aux ressources par les voies englacées en raison d’un changement du régime des précipitations et de la longueur de la saison froide (Furgal et al. 2002 ; Lafortune et al. 2004) et peut avoir des conséquences socio-économiques importantes pour les résidents du nord. Un projet de recherche communautaire, réunissant le savoir traditionnel et scientifique, s’est avéré nécessaire pour aider les populations locales à faire face aux changements en cours du climat de manière à maintenir leurs activités traditionnelles.

hivernaux. En plus d’affecter la sécurité humaine, ces changements environnementaux peuvent influencer l’accessibilité de certains secteurs et gêner l'accès à la faune en migration. C’est une situation qui a déjà été rapportée par les communautés des Territoires-du-Nord-Ouest, du Nunavut et de l'Alaska (Fox et al. 2002).

Si cette récente hausse des températures moyennes se poursuivait dans le Nord du Québec au cours des prochaines années, celle-ci pourrait avoir des conséquences importantes sur la vie des habitants de la région. Cette étude cherche à développer des outils qui permettront aux populations nordiques de s’adapter plus facilement aux changements climatiques et environnementaux et de conserver leur mode de vie basé sur des activités de subsistance. L’étude réunit le savoir traditionnel sur les sentiers, la glace, le climat et l’environnement et la connaissance scientifique par les mesures de glace et de neige, les analyses de données météorologiques et l’analyse des entrevues. L’étude est basée sur la participation active des membres des communautés par le biais d’un chercheur local dans chacune des communautés impliquées dans le projet (Tremblay et al. sous presse). L’objectif principal est d’aider les communautés à documenter les impacts observés des changements climatiques et développer des stratégies d'adaptation à partir du savoir traditionnel et scientifique permettant aux communautés d’en atténuer les impacts négatifs sur l’accès aux sentiers traditionnels et d’augmenter la sécurité lors des déplacements sur le territoire. Les objectifs spécifiques du projet sont i) de documenter l’impact des changements climatiques sur le réseau des sentiers et les adaptations en cours pour un accès sécuritaire aux ressources et au territoire et ii) d’évaluer les futurs impacts potentiels des changements climatiques sur l’accès au territoire et aux ressources par des scénarios climatiques et des suivis communautaires. Le présent rapport est constitué des plusieurs sections portant, entre autres, sur la description de la région du projet, les principaux résultats, le développement des capacités dans le Nord et les recommandations pour un accès sécuritaire au territoire et aux ressources.
4. Région du projet

La population du Nunavik compte plus de 10 000 habitants (Statistique Canada, 2006). La région du Nunavik est répartie dans 14 communautés qui sont accessibles seulement par avion (pendant toute l'année) ou par bateau (pendant les mois d'été; figure 1). La communauté Naskapiie de Kawawachikamach est localisée juste au Sud de la limite du Nunavik et est liée par la route à la communauté de Schefferville, elle-même accessible par chemin de fer à une communauté sur la rive nord du fleuve Saint-Laurent. Aucune de ces communautés n'est liée entre elles ni avec le reste de la province par le réseau routier. Les réseaux de sentiers sont donc particulièrement importants puisqu'ils permettent aux résidants de voyager entre les villages en plus de leur fournir un accès aux aires de récolte et aux ressources du territoire. Cinq communautés inuites et la communauté naskapiie sont impliquées dans le projet de recherche.

4.1 Les communautés Inuites

Toutes les communautés inuites du Nunavik impliquées dans le projet (Akulivik, Ivujivik, Kangiqsualujjuaq, Kangiqsujujaq et Umiujaq) ont un accès direct à la mer (figure 1). L’économie locale de la région dépend en grande partie des activités traditionnelles comme la chasse (lagopède, caribou, phoque, morse, béluga et autres espèces), la pêche (omble arctique, truite grise, truite arc-en-ciel et autres espèces) et la cueillette (baies et moules). Les grandes étendues d’eau (gelées ou non) sont souvent les zones privilégiées lors des déplacements pour atteindre les aires traditionnelles de récolte. Selon Statistique Canada (2001), le Nunavik constitue d’ailleurs la région où les activités traditionnelles sont les plus pratiquées de toutes régions nordiques du Canada où près de 81% des adultes pratiquent encore des activités de chasse ou de pêche à des fins de subsistance.
Figure 1: Six communautés du Nord du Québec font parti du projet de recherche (Akulivik, Ivujivik, Kangiqsualujjuaq, Kangiqsujuaq, Kawawachikamach et Umiujaq).
Les communautés inuites ont été fondées après l’arrivée des postes de traite de la Compagnie de la baie d’Hudson dans la première moitié du 20e siècle (figure 1). Akulivik est localisée dans la portion nord de la baie d’Hudson et prend son nom de la géographie du paysage local : une péninsule se jetant dans la baie ayant la forme d’un kakivak (un harpon traditionnel en forme de trident qui est utilisé pour la pêche). La géographie particulière des lieux favorise la libération rapide de la péninsule des glaces environnantes, influençant ainsi les activités traditionnelles de ses résidents. Le site d’Akulivik (et les environs) est occupé de façon permanente depuis le début du 20e siècle. La Compagnie de la baie d’Hudson a établi un poste de traite au site d’Akulivik en 1922 et les Inuits ont commencé alors à s’établir graduellement dans les environs (Île Smith). Le poste de traite a été fermé en 1952 et la population a été contrainte alors à se déplacer à Puvirnituq (le poste voisin). La population déplacée n’a jamais oublié la région et en 1973 une première famille est retournée dans le secteur. Les années suivantes, plusieurs familles ont suivi et y ont construit le village d’Akulivik. La communauté a été reconnue comme un village nordique en 1976 et aujourd’hui plus de 507 personnes y habitent (Statistique Canada, 2006).

Ivujivik, qui signifie en Inuittitut « l'endroit où la glace s'accumule en raison des forts courants », est le village le plus nordique du Québec (figure 1). Les forts courants marins présents dans le détroit d’Hudson permettent difficilement à la glace de se former pendant une partie de l’hiver. Le site est occupé de façon permanente depuis le début du 20e siècle. Un comptoir commercial a été établi pour la première fois sur le site en 1909 par la Compagnie de la baie d’Hudson. En 1938, une mission catholique a été fondée et les Inuits ont commencé graduellement à s’établir près de ces deux établissements en 1947. Approximativement 349 personnes vivent maintenant dans cette communauté (Statistique Canada, 2006).
Kangiqsualujjuaq, qui signifie « la très grande baie » en Inuttitut, est le village le plus à l’est du Nunavik, à 25 km de la baie d’Ungava (figure 1), et compte plus de 735 habitants (Statistique Canada, 2006). Le village a été construit en 1962 à l’embouchure de la rivière George, juste au sud de la limite des arbres. Les habitants de Kangiqsualujjuaq ont été les premiers du secteur à établir une coopérative du Québec nordique (Société Makivik, 2006).

Kangiqsujuuaq, « la grande baie » en Inuttitut, est situé le long de la côte du détroit d’Hudson et au nord de la limite des arbres (figure 1). Le site actuel du village est occupé de façon permanente depuis le 20e siècle. Un comptoir commercial a d’abord été établi la première fois sur la rive sud-est de la baie de Wakeham en 1910 et les Inuits ont par la suite continuellement occupé le site (Société Makivik, 2006). Approximativement 605 personnes vivent maintenant dans cette communauté (Statistique Canada, 2006).

Umiujaq est situé sur la côte est de la baie Hudson au nord du lac Guillaume-Delisle, au pied d’une colline qui ressemble à un umiaq, c’est-à-dire une embarcation traditionnelle inuite fabriquée en peaux de morse (figure 1). La position d’Umiujaq marque la limite entre la toundra et les biomes de forêt-toundra. Umiujaq est le village le plus récemment érigé dans la région du Nunavik. Le village a été construit en 1985-1986 par une partie des Inuits habitant à Kuujjuaarapik qui se sont alors déplacés dans le secteur d’Umiujaq afin de préserver leur style de vie plus traditionnel dans le contexte des futurs projets hydroélectriques prévus à cette époque dans la région de la rivière Grande-Baleine. La communauté d’Umiujaq compte aujourd’hui plus de 390 habitants (Statistique Canada, 2006).

communautés ont été rencontrés et le projet leur a été présenté. Les différentes parties ont appuyé le projet. Les activités de recherche ont commencé dans ces deux communautés au début du mois de novembre 2005. L’équipe de recherche a réalisé des entrevues sur la dynamique de la glace et a cartographié les principaux sentiers dans ce secteur de la région.

4.2 La communauté Naskapie de Kawawachikamach

Le village naskapi de Kawawachikamach est localisé à l’intérieur des terres dans la toundra forestière loin des zones côtières (figure 1). Les activités traditionnelles de récolte de subsistance ont toujours tenu une place importante dans le mode de vie des Naskapis. Le caribou, les poissons d’eau douce et les petits gibiers sont chassés/pêchés par les membres de la communauté. Les Naskapis qui vivent maintenant dans la communauté de Kawawachikamach ont été relocalisés à plusieurs reprises pendant leur histoire. Pendant la première moitié du 20ème siècle, la communauté a été déplacée pour la première fois de Fort Chimo (maintenant Kuujjuaq) à Fort McKenzie en 1915, puis de nouveau à Fort Chimo en 1948, et finalement près de Schefferville en 1956 (Nation Naskapi de Kawawachikamach, 2006). Il y a maintenant environ 569 habitants vivant à Kawawachikamach (Statistiques Canada, 2006), dont la grande majorité est Naskapi.
5. Objectifs et résultats du projet (3)*

5.1 Documenter l’impact des changements climatiques sur le réseau des sentiers et les adaptations pour l’accès aux ressources et au territoire. (3.1)*

Le projet communautaire entrepris par l’Administration régionale Kativik et ses collaborateurs a permis, entre autres, de répondre à l’objectif de documenter les principaux impacts sur l’accès au territoire et aux ressources du récent réchauffement climatique et les adaptations pour l’accès au territoire et aux ressources. Les principaux impacts observés sont associés à des hivers tardifs et des printemps hâtifs qui modifient la durée d’englacement et qui influencent la dynamique des glaces. Les milieux les plus sensibles sont les milieux côtiers, surtout où se déjettent les grandes rivières du Nunavik provenant des bassins hydrographiques des baies d’Hudson et d’Ungava. Ces endroits peuvent demeurer à risque tout au long de l’hiver, mais particulièrement au début de l’hiver et au printemps. Les lacs, qui s’englagent plus tardivement qu’auparavant, ne causent pas de problèmes majeurs à la sécurité des déplacements. Une fois que la glace est solidement formée au début de l’hiver, elle est généralement sécuritaire jusqu’en période printanière (sauf aux embouchures de rivières). L’arrivée tardive du couvert neigeux peut cependant limiter les déplacements. Des accumulations de neige, suffisantes pour l’utilisation de la motoneige depuis les villages, peuvent arriver après l’englacement des lacs et retarder l’accès au territoire. Il est aussi fréquent que la neige des sentiers disparaîse avant la fonte des lacs. Les principales adaptations à ces changements permettant d’accéder au territoire et aux ressources se caractérisent par l’utilisation de sentiers alternatifs en milieu terrestre, le retard de certaines activités traditionnelles à l’automne et l’utilisation d’équipement de navigation comme le GPS et de communication comme le téléphone satellitaire. Parmi les outils d’adaptation les plus efficaces et beaucoup utilisés, le savoir traditionnel est élément toujours valable pour l’adaptation en cours et future aux changements climatiques. Le savoir traditionnel portant entre autres sur la glace, l’environnement et les sentiers peuvent fournir des
informations clés permettant des déplacements plus sécuritaires. Les sections suivantes
discutent particulièrement de l’utilisation contemporaine des sentiers, des principaux
changements climatiques et environnementaux en cours observés par les populations
locales et de leurs conséquences sur le réseau de sentiers, de la cartographie des sentiers
traditionnels et des zones à risque et du savoir traditionnel de la glace.

5.1.1 Les moyens de transport et l’utilisation des sentiers

Les populations du Québec nordique ont toujours été très mobiles, se déplaçant
sur un grand territoire pour atteindre les zones de récoltes. Les chasseurs et pêcheurs ont
toujours été des navigateurs hors pair. Cependant, beaucoup de changements se sont
produits depuis le dernier siècle avec l’arrivée des premiers postes de traite. Les styles de
vie inuit et naskapi ont changé, passant d’un mode de vie nomade à l’établissement de
communautés où le mode vie est maintenant plus sédentaire. Malgré ces changements
importants, les sentiers sont encore empruntés pour les activités traditionnelles et les
risques associés à leur utilisation font toujours partie de la vie quotidienne des Inuits et
des Naskapis. Les nouveaux modes de transport utilisés (davantage motorisés) continuant
un autre changement non moins important pour les résidents de la région. Les
conséquences les plus apparentes qui accompagnent l’utilisation des modes de transport
motorisés semblent être davantage liées à des questions de la sécurité humaine que sur la
configuration du réseau de sentiers lui-même. De plus, les principaux sentiers utilisés
pour l’accès au territoire et aux ressources semblent être sensiblement les mêmes depuis
longtemps (figure 2).

« Aussitôt que la motoneige est apparue elle a été immédiatement utilisée.
Ils (utilisateurs des sentiers) ont utilisé les sentiers traditionnels avec la
motoneige. » Paulasi Qaunaaluk, Ivujivik.
Figure 2 : Sentiers de traîneau à chiens (haut) et de motoneige (bas) près de la communauté de Kangiqsualujjuaq. Les principaux sentiers traditionnels sont toujours utilisés. Toutefois, l’utilisation de la motoneige est maintenant privilégiée par rapport aux traîneaux à chiens.
L'introduction de la motoneige, du canoë/bateau motorisé, des tout-terrains, des camions et même des avions a certainement eu un impact sur l'accès au territoire et aux ressources par les Inuits et les Naskapis. Cependant, les usages principaux des réseaux de sentiers traditionnels demeurent inchangés, au moins en ce qui concerne les communautés inuites participant à cette étude. Même s'ils sont moins populaires, les sentiers pédestres, les sentiers de traineaux à chiens et les routes traditionnels de kayak sont encore employés pour la chasse, la pêche, le piégeage, ou pour voyager d'une communauté à l'autre. Puisque les populations inuites sont maintenant sédentarisées, les sentiers traditionnels les plus éloignés ne sont plus employées de façon aussi régulière. Toutefois, tous les sentiers traditionnels sont encore accessibles. Le déplacement récent d'un certain nombre d'habitants de Kuujjuaarpik à Umiujaq n'a pas changé le réseau de sentiers utilisé puisque une grande partie de secteur entourant Umiujaq faisait déjà partie du réseau traditionnel de sentiers utilisés avant la création du nouveau village.

La situation est différente pour les Naskapis de Kawawachikamach. En raison de la relocalisation de Fort Chimo (actuellement Kuujjuaq; figure 1) à la région de Kawawachikamach en 1956, les chasseurs réalisent aujourd’hui leurs activités traditionnelles dans cette nouvelle région. Les résidents de Kawawachikamach connaissent néanmoins très bien leur environnement et le réseau de sentiers maintenant utilisés pour les activités traditionnelles.
5.1.2 Les changements climatiques en cours

i. Les changements climatiques et environnementaux en cours observés par les résidents du Nord

Les changements climatiques se réfèrent à une variation statistiquement significative de l’état moyen du climat, ou de sa variabilité, persistant pendant une période prolongée (de quelques décennies à une plus longue période; GIEC 2007). Les observations des populations locales permettent d'identifier et hiérarchiser les principaux changements dans un contexte spécifique. Dans le contexte d’accès au territoire et aux ressources, la durée des saisons et la quantité des précipitations nivales de même que des indicateurs pour mesurer la rigueur de l'hiver semblent être les variables climatiques les plus importants. Les données instrumentales demeurent toutefois essentielles pour préciser le cadre spatio-temporel des tendances climatiques en cours.

Les entrevues conduites par les chercheurs locaux avec les experts suggèrent que nous assistons à une période de réchauffement dans le nord du Québec au cours des dix dernières années qui a des conséquences importantes, particulièrement dans les communautés côtières inuites impliquées dans le projet de recherche. Bien qu'une décennie chaude ne puisse être considérée comme une tendance climatique, elle fournit néanmoins une indication de l'impact à venir des changements climatiques anticipés. D’abord, les experts Inuits et Naskapis ont observé au cours des dernières années des températures (estivales et hivernales) plus élevées que la moyenne. Ces experts rapportent que l'hiver arrive plus tardivement (englacement tardif) et le printemps survient plus hâtivement (dégel hâtif). Ces observations sont corroborées par les mesures des superficies englacées réalisées par le Service canadien des glaces qui montrent une tendance au cours des 10 dernières années à un dégel hâtif et un englacement tardif des baies d’Hudson et d’Ungava (figure 3). Ces observations corroborent aussi avec les données instrumentales d’Environnement Canada. Les données météorologiques
montrent sans équivoque que les températures mensuelles moyennes de Kuujjuaq, Inukjuak, Kuujjuaaraapik et Schefferville, qui constituent les plus longues séries météorologiques au Nunavik et au Nord du Québec, ont été plus élevées que la moyenne annuelle et saisonnière (en hiver surtout) au cours des dernières années (figures 4, 5 et 6). Les experts rapportent aussi que les accumulations nivales apparaissent plus tardivement pendant la période hivernale.

« Aujourd’hui, nous avons de la glace plus tard en saison. Le printemps est plus hâtif et la glace que nous utilisons normalement fond plus vite que dans le passé. » Eyuka Pinguatuk, Kangiqsujuaq

« Maintenant tout est retardé et il est très difficile de prédire quand nous aurons des températures froides ». Joshua Sala d’Umiujaq

« L’hiver dure normalement sept mois. Mais maintenant il dure seulement cinq mois, ce qui m’affecte beaucoup. Maintenant c’est totalement différent. » Davidee Niviaxie, Umiujaq.
Figure 3 : Superficies englacées des baies d'Hudson et d'Ungava au moment de l'englacement et du déglacement. Les données proviennent du Service canadien des glaces (http://ice-glaces.ec.gc.ca/WsvPageDsp.cfm/?ID=1&Lang=fr).
Figure 4 : Température moyenne annuelle du Nord du Québec (http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_f.html).
Figure 5 : Température moyenne hivernale à Inukjuak (http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_f.html).
Figure 6 : Température moyenne estivale à Inukjuak (http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_f.html).
ii. Conséquences du réchauffement et des changements environnementaux associés sur les sentiers traditionnels

Les résultats montrent jusqu'ici que le réchauffement de la dernière décennie et les changements environnementaux associés ont des impacts modérés sur le réseau de sentiers des communautés côtières d’Akulivik, Ivujivik, Kangiqsualujjuaq, Kangiqsujuaq et Umiujaq. Les résidants de ces cinq communautés inuites emploient déjà des stratégies d’adaptation comme des sentiers alternatifs pendant l'hiver pour éviter les secteurs plus risqués ou inaccessibles (figures 7, 8 et 9). Les résultats de la recherche montrent que des sentiers alternatifs sont surtout empruntés pour contourner une glace de mer qui est plus mince qu’auparavant (5 communautés inuites) ou de l’arrivée tardive du couvert de neige en début de saison hivernale (Ivujivik et Akulivik). Certains sentiers alternatifs sont aussi utilisés par les résidents de Kawawachikamach, de même que des communautés inuites, pour contourner des zones à risque en milieu lacustre qui sont plus nombreuses pendant la saison printanière. L’accumulation nivale qui est plus importante sur les lacs change la dynamique de la fonte de la glace. La fonte du couvert de neige favorise l’accumulation d’eau au printemps. Le mélange d’eau et de neige est particulièrement un problème pour les motoneigistes dont leurs motoneiges peuvent en restées prisonnières.

« …nous avons moins de neige que nous devrions avoir (début novembre). On doit attendre plus de temps avant d’avoir suffisamment de neige pour nous rendre où nous voulons (en motoneige). Nous avons souvent besoin de changer de direction pour rester sur la neige en raison du peu de neige. » Mattiusi Iyaituk, Ivujivik.

« Avant, la neige et le terrain étaient assez solides pour voyager (en motoneige) sans risque. En raison du réchauffement global, la situation a
Figure 7 : Glace de mer dans le détroit d’Hudson le 10 février 2008. La glace de mer est maintenant plus instable. Dans la région du détroit d’Hudson, la glace de mer est mobile en raison des forts courants. La banquise côtière demeure une zone où la glace y est plus stable (Photo : Martin Tremblay).
Figure 8 : Embouchure de rivière dans le détroit d’Hudson le 28 février 2007. Les embouchures sont considérées à risque pour les chasseurs expérimentés et les aînés. Ces zones à risque sont plus nombreuses que dans le passé (Photo : Martin Tremblay).
Figure 9 : Sentier alternatif de motoneige à Kangiqsualujuaq. Les secteurs à risque au moment de l’englacement et du dégel sont plus nombreux qu’auparavant. Les gens des communautés inuites impliquées dans le projet rapportent utiliser des sentiers alternatifs pour contourner les zones plus à risque.
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008

changé. Ils (chasseurs) doivent être plus attentifs et les itinéraires qui sont utilisés pendant l'hiver sont maintenant non gelés… ». Quitsak Tarriasuk, Ivujivik

« C'est principalement sur la côte que nous avons des problèmes (en motoneige) parce que la glace n'est pas gelée autant aujourd'hui qu'elle ne l'était. Dans le passé, nous pouvions voyager avec confiance mais aujourd'hui la glace de mer fond par le courant. » Mattiusi Iyaituk, Ivujivik

Ces nouvelles conditions climatiques peuvent toutefois avoir des conséquences sur l'accès au territoire et aux ressources. Le gel tardif des plans d'eau retarde les activités traditionnelles qui sont réalisées dans les endroits éloignés de la communauté accessibles seulement en motoneige. La synchronisation des chutes de neige avec la période d'englacement des lacs et rivières semble aussi avoir des conséquences sur l'accès au territoire. Sans un couvert suffisant de neige depuis les villages jusqu'aux sentiers à l'extérieur des zones développées, l'utilisation de la motoneige n'est pas possible même si les plans d'eau terrestres sont suffisamment gelés.

« La différence pour mes itinéraires réguliers aujourd'hui c’est que j'irais normalement pêcher parce que nous avons habituellement de la neige à ce moment de l'année. Mais maintenant, aujourd'hui (3 novembre 2005), il n’y a toujours pas de neige. » Henry Quissa, Akulivik
Figure 10 : Les conditions météorologiques sont maintenant plus difficiles à prédire. Il est désormais préférable d’utiliser des voies de navigation près du littoral pour atténuer les risques associés à des conditions météorologiques imprévues (Photo : Martin Tremblay).
Les sentiers utilisés pendant la saison estivale sont beaucoup moins influencés par les changements climatiques ou environnementaux en cours. On rapporte toutefois qu’il est préférable d’utiliser des voies de navigation le long du littoral pour atténuer les risques associés à une plus grande imprévisibilité de la météo (figure 10). Le site Internet du projet a entre autres mis certains liens pour permettre l’accès rapide aux prévisions des conditions météorologiques et marines locales d’Environnement Canada (http://climatechange.krg.ca/).

iii. Augmentation de la circulation maritime et impacts sur l’accès au territoire

L’augmentation de la circulation maritime associée, entre autres, au développement de l’industrie minière est aussi un facteur à considérer (figure 11). Le territoire du Nunavik est particulièrement riche en minéraux. Une seule compagnie minière opère présentement des activités d’exploitation et le transport maritime du minerai est limité de juillet à mars. Les mois d’avril, mai et juin sont interdits à la circulation maritime puisqu’ils correspondent aux mois de mise bas des phoques. Considérant le prix de métaux et l’intensité des activités d’exploration au Nunavik, il est probable que d’autres compagnies minières débuteront des activités d’exploitation dans les prochaines années qui nécessiteront le transport des minerais. L’impact potentiel de la circulation maritime sur la stabilité de la glace dans un contexte de réchauffement climatique et d’accès au territoire et aux ressources n’est pas très bien connu et mérite nécessairement de s’y intéresser.
Figure 11 : La circulation maritime en hiver dans le détroit d’Hudson. Les conséquences sur la stabilité de la glace ne sont pas très bien connues (Photo : Martin Tremblay).
5.1.3 Réseaux de sentiers

i. Cartographie des sentiers traditionnels et des zones jugées à risque (3.2)*

Des activités de cartographie ont été réalisées pour documenter les principaux itinéraires permettant l’accès aux territoires traditionnels de récolte. Les sentiers hivernaux et estivaux des régions environnantes d’Akulivik, Ivujivik, Kangiqsualujjuaq, Kangiqsujuaq, Kawawachikamach et Umiujaq ont été identifiés sur des cartes à partir d’entrevues réalisées avec des chasseurs expérimentés et des aînés par chaque chercheur local (Figure 12 et 13; Tableau 1). Ces sentiers représentent des itinéraires utilisés par les chasseurs/pêcheurs depuis plusieurs générations (Annexe 1). Les gens interviewés ont signalé l’importance de transmettre les cartes produites aux plus jeunes générations.

« Je voudrais que d’autres puissent utiliser ces cartes, surtout les futures générations. » Mattiusi Iyaituk, Ivujivik.

« Elles (cartes) peuvent être utilisées par les jeunes gens parce qu’ils ne vont pas à la chasse maintenant ou ils utilisent d’autres tactiques pour aller à la chasse. Si ces informations sont correctement transposées, elles vont être très utiles. » Saviadjuk Usuardjuk, Ivujivik.

« Ce serait bien que ces informations soient disponibles pour les futurs générations et utilisées pour devenir un Homme. » Paulasi Qaunaaluk, Ivujivik.

<table>
<thead>
<tr>
<th></th>
<th>Akulivik</th>
<th>Ivujivik</th>
<th>Kangiqsujuaq</th>
<th>Kangiqsualujuaq</th>
<th>Kawawachikamach</th>
<th>Umiujaq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamique de la glace</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cartographie des sentiers</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Validation des cartes</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Vidéo</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
Figure 12 : Activité de cartographie des sentiers et des zones à « à risque » réalisée par le chercheur local d’Akulivik en novembre 2005. Des entrevues ont été réalisées dans chacune des communautés impliquées par les chercheurs locaux avec des chasseurs expérimentés et des aînés pour documenter les sentiers régionaux traditionnels (Photo Martin Tremblay).
Figure 13 : Activité de validation des sentiers et des zones « à risque » réalisée par le chercheur local avec un chasseur expérimenté à Kangiqsualujjuaq en Novembre 2005. Les sentiers des régions de Kangiqsujuaq, Umiujaq et Kawawachikamach ont aussi été validés par des aînés et des chasseurs expérimentés (Photo : Martin Tremblay).
Les cartes identifient aussi les endroits qui sont à risque lors de la formation de la glace en début de saison hivernale ou lors de la période de fonte au printemps. Plusieurs sentiers alternatifs ont été identifiés pour contourner ces zones. Ces informations sont particulièrement utiles pour les utilisateurs qui connaissent moins bien le secteur et la localisation des zones à risque. Les cartes validées sont disponibles gratuitement, sous forme d’un atlas, sur cd et aussi sur le site Internet du projet (http://climatechange.krg.ca/).

5.1.4. La connaissance de la glace (3.2)*

i. La terminologie (3.2)*

Les entrevues réalisées par les chercheurs locaux avec les chasseurs expérimentés et les aînés ont permis de constituer un lexique utilisé principalement pour décrire la glace de mer (Annexe 2). Ce type de glace demeure plus complexe que la glace de rivière et de lac. La grande richesse terminologique inuite pour décrire la glace de mer
s’explique par le degré de compréhension de la population de leur milieu. Une investigation plus détaillée devrait être aussi réalisée pour documenter la terminologie de la glace de lac et, notamment, celle utilisée par les Naskapis.

Le vocabulaire utilisé pour décrire la glace varie selon le dialecte de la région. Des différences régionales peuvent s’observer entre les termes utilisés par les Nunavimmiuts du sud et du nord de la baie d’Hudson, du détroit d’Hudson et de la baie d’Ungava. Par exemple, le terme *allamuk* qui signifie glace mobile par les Umiujaqmiut est plutôt remplacé par le terme *aulaniq* par les Ivujivikmiuts. Il existe aussi des synonymes utilisés au sein même d’une même communauté. Ainsi le terme *pirtutak* utilisé par les Akulivikmiuts pour signifier une glace formée par une fine couche de neige déposée sur l’eau peut être aussi nommé par ces derniers *tuktuyaq*.

La terminologie inuttitut de la glace est riche et précise. Certains mots, en plus de décrire la forme, signifient le processus menant à la forme observée. Un exemple intéressant provient de la côte de la baie d’Hudson où les experts de la glace utilisent, entre autres, trois termes inuttitut pour décrire la glace de mer au printemps : *upingasak*, *upingaak* et *akunaagiq*. *Upingasak* désigne la fonte de la glace au début du printemps. Ce terme se réfère à la première phase de la fonte. La glace, qui est blanche à la fin de l’hiver, adopte une couleur bleue à la suite de la fonte de la neige en surface et elle termine par adopter la couleur blanche pour une seconde fois lorsque l’eau se draine. Le terme *Akunaagiq* se réfère plutôt à la seconde phase de la fonte de la glace de mer au printemps qui suit la phase *upingasak*. Par l’accumulation d’eau de fonte, la glace adopte successivement la couleur blanche, bleue et noire. Elle est considérée non sécuritaire lorsqu’elle est noire. *Upingaak* se réfère finalement à la fonte de la glace à la fin du printemps (suivant la phase *Akunaagiq*). Ce terme se réfère à la troisième et dernière phase de la fonte de la glace de mer au. La glace adopte successivement la couleur...
blanche et noire. Tout au long cette phase, la glace n’est pas sécuritaire pour s’y déplacer.

Le savoir traditionnel de la glace, notamment la terminologie de la glace de mer, est nécessairement un outil efficace pour comprendre les processus menant à la formation ou à la fonte de la glace de mer. La valeur intrinsèque de ce savoir pour un accès sécuritaire aux ressources et au territoire est non négligeable. Toutefois, la transmission de ce savoir aux plus jeunes générations se fait plus difficilement qu’auparavant. Nous recommandons que ce type de savoir traditionnel soit inclus dans le cursus scolaire en favorisant l’implication des aînés et de chasseurs expérimentés via des excursions et la transmission intergénérationnelle du savoir empirique.

ii. Le climat et la dynamique de la glace de mer et de lac (3.2)

Les connaissances traditionnelles sur la période d’englacement et de dégel sont présentées dans cette section. Ces informations regroupent les principaux facteurs climatiques et environnementaux qui peuvent influencer la dynamique de la glace. Ces informations permettent aux utilisateurs des sentiers d’avoir une meilleure connaissance de leur environnement pour des déplacements plus sécuritaires.

L’englacement

Dans le Nord du Québec, la période d’englacement survient plus tardivement qu’auparavant (figure 3, tableau 2) et les experts de la glace rapportent qu’elle semble maintenant plus mince tout au long de la saison hivernale. Selon les aînés et les chasseurs expérimentés, il est tout même possible d’utiliser certains indicateurs pour déterminer si la glace est sécuritaire ou non pour les déplacements.
Il existe des indicateurs climatiques qui permettent d’évaluer les différentes phases de formation ou de fonte de la glace. Au début de la période hivernale, les experts locaux se servent des observations météorologiques des jours précédents (température de l’air, chute de neige, présence de vent et humidité) pour déterminer la phase de formation de la glace. Ces indicateurs servent à la fois pour déterminer la sécurité de la glace en milieux marins et lacustres. La température constitue un indicateur non négligeable. Selon les experts locaux, un premier « coup de froid » est souvent nécessaire pour que la glace se forme et devienne plus solide. Les experts locaux évaluent qu’il faut deux à trois journées froides avant que la glace soit véritablement formée.

« Vous avez besoin de deux à trois journées consécutives pour que la glace (de mer) se forme. » David Niviaxie, Umiujaq

« Elle (la glace) gèle complètement seulement lorsqu’il fait extrêmement froid. La glace ne gèle pas, même si les températures sont basses, lorsque le temps est venteux. » Yaaka Yaaka, Kangiqsujuaq

« Sur la terre ferme, l’eau douce va prendre trois journées froides pour se former et devenir sécuritaire pour s’y déplacer à pied. » Mattiusi Iyaituk, Ivujivik
Tableau 2 : Principaux facteurs qui influencent la dynamique de la glace identifiés par les experts Inuit et Naskapis.

<table>
<thead>
<tr>
<th>Description</th>
<th>Période de la dynamique de la glace</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formation de la glace de mer et de lac plus tardive qu’auparavant.</td>
</tr>
<tr>
<td></td>
<td>Fonte de glace de mer et de lac plus hâtive qu’auparavant.</td>
</tr>
<tr>
<td></td>
<td>Glace généralement plus mince tout au long de l’hiver, situation particulièrement problématique dans les secteurs marins soumis aux courants (non observée à Kawawachikamach).</td>
</tr>
<tr>
<td></td>
<td>Moins de neige que dans le passé (observations à Ivujivik et Akulivik), du moins en début de saison hivernale.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facteurs environnementaux</th>
<th>Courants (force)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profondeur de l’eau</td>
</tr>
<tr>
<td></td>
<td>Salinité</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Facteurs climatiques</th>
<th>Température</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vent</td>
</tr>
<tr>
<td></td>
<td>Précipitations (neige/pluie)</td>
</tr>
<tr>
<td></td>
<td>Radiation solaire</td>
</tr>
<tr>
<td></td>
<td>Humidité de l’air</td>
</tr>
</tbody>
</table>
Les chûtes de neige constituent aussi un paramètre météorologique important selon les experts locaux de la glace. Même si les accumulations de neige sont essentielles pour l’établissement des sentiers hivernaux, la neige peut toutefois influencer le développement de la glace en milieux salin et d’eau douce et avoir des implications sur la sécurité de son accès. Les experts locaux signalent que la neige joue un rôle d’isolant contre les basses températures et inhibe la pénétration du froid et par conséquent la formation de la glace. Les accumulations nivales peuvent rendre les déplacements hivernaux plus périlleux en camouflant les endroits plus dangereux. Par exemple, les accumulations récentes de neige peuvent ressembler à de la vieille glace qui, elle, est normalement très solide. Il est d’autant plus difficile de connaître l’état « sécuritaire » de la glace lorsqu’il y a des accumulations de neige qui s’accumulent sur plusieurs jours consécutifs.

« S’il neige pendant plusieurs journées consécutives, il est plus difficile de dire si la glace (de mer) est sécuritaire ou non. Les flocons de neige qui couvrent la nouvelle glace deviennent un isolant contre le froid et préviennent la formation de la glace. Cette surface peut devenir très dangereuse puisqu’elle ressemble beaucoup à la vieille glace ». David Niviaxie, Umiujaq

« La neige est facteur très important pour la formation de la glace (de lac). S’il neige beaucoup, il peut être dangereux de circuler sur celle-ci… Les lacs demeurent dangereux s’il neige plusieurs journées consécutives. » Joshua Sala, Umiujaq.

Le vent est un autre paramètre météorologique à considérer lors de l’englacement des milieux marin et lacustre. Les experts locaux reconnaissent que la présence de vent peut retarder le développement de la glace surtout pendant sa phase initiale. Par exemple,
la présence de forts vents peut retarder la formation de frasil au début de la période hivernale.

« Le vent joue un rôle important. Les forts vents vont déglaicer les petites rivières. Si le vent n’est pas trop fort, la rivièrre va former de la glace plus rapidement » Joshua Sala, Umiujaq.

La pression atmosphérique est aussi un indicateur climatique à considérer dans le développement de la glace, toujours selon les experts locaux. Les cellules de haute pression, qui caractérisent les journées de temps clair et sec, contribuent à l’englacement des environnements salin et lacustre. Ces experts reconnaissent l’importance de périodes d’anticyclones dans le développement de la glace.

« Lorsque le temps est sec, la pression (atmosphérique) est élevée et le ciel est clair, la glace va commencer à se former lorsqu’il n’y a pas de vent. Lorsque le temps est très calme, la glace d’eau douce va se solidifier. » Peter Matte, Akulivik.

La présence d’anticyclones est d’ailleurs influencée par l’oscillation arctique qui est responsable des variations du gradient de pression entre les régions polaires et subpolaires de l’Hémisphère Nord. Pendant les périodes d’anticyclones (oscillation arctique négative), la pression atmosphérique est plus haute, les vents plus faibles, l’eau de mer plus froide et le couvert de glace de mer plus important que pendant les périodes cycloniques (oscillation arctique positive) (Richter-Menge et al. 2006). La présence de périodes anticycloniques en début d’hiver peut favoriser la formation de la glace nécessaire pour l’accès au territoire. La formation plus tardive de la glace de mer des dernières années au Nunavik pourrait être associée en partie à une oscillation plus faible.
(mais positive) depuis le milieu des années 1995 et à une oscillation négative en 2005 (figures 3 et 14).

Le dégel
La période de dégel des glaces est aussi une période critique pour les déplacements. Selon les observations locales, la fonte de la glace de mer et de lac surviendrait plus tôt au cours des dernières années, ayant des conséquences sur l’accès sécuritaire au territoire et aux ressources. Cette observation est généralisée pour toutes les communautés inuites et naskapie impliquées dans le projet. Les experts locaux observent d’abord une relation importante entre la durée de l’hiver et l’épaisseur de la glace en milieux salin et lacustre. Ces experts notent que les hivers plus courts et plus neigeux des dernières années sont à l’origine d’une diminution de l’épaisseur de la glace par rapport à ce qu’ils ont l’habitude d’observer. Une glace plus mince est alors plus susceptible à se disloquer par le vent et à fondre rapidement au printemps.

« Pour les conditions de glace (de mer), aujourd’hui elle fond en une journée. Avant, la fonte de la glace durait plus longtemps. La saison hivernale est maintenant tellement courte. » Susie Morgan, Kangiqsualujjuaq.

Les aînés et les chasseurs expérimentés soulignent qu’il existe plusieurs paramètres météorologiques contribuant à la fonte de la glace de mer et de lac. Ces paramètres peuvent servir d’indicateurs climatiques de la sécurité de la glace. Par exemple, les températures plus chaudes et une radiation solaire plus intense peuvent contribuer à une fonte accélérée du couvert de glace.
« …lorsqu’il commence à faire plus chaud par la chaleur du soleil, la glace d’eau douce peut devenir rapidement dangereuse même si elle est très épaisse, spécialement lorsque la glace est très claire. » Yaaka Yaaka, Kangiqsujuaq.

La présence de vent est aussi un facteur climatique identifié par les experts locaux qui contribue à la dislocation des glaces printanières. Le savoir scientifique rapporte d’ailleurs que la présence de périodes cycloniques est souvent associée à la présence de vent plus important, parfois divergent, et à l’advection de chaleur qui favorisent le dégel plus hâtif de la glace de mer (Richter-Menge et al. 2006). La présence de pressions atmosphériques plus basses au cours des dernières années pourraient entre autres expliquer la fonte hâtive du couvert de glace marine au Nunavik (figures 3 et 14). Les experts locaux rapportent aussi que la présence d’une couverture neigeuse peut influencer la fonte de la glace en jouant un rôle d’isolant contre la pénétration de la chaleur.
Figure 14 : Oscillation arctique pour la période de 1950-2005 (figure adaptée de Richter-Menge et al. 2006).
iii. Les facteurs environnementaux et la dynamique de la glace (3.2)*

Selon le savoir traditionnel inuit et naskapi, plusieurs facteurs environnementaux influencent la dynamique de la glace (tableau 2). La salinité, la profondeur de l’eau, le courant et l’élévation constituent des facteurs à considérer dans le développement de la glace de mer et de lac, tant sur les propriétés de la glace elle-même que sur le moment du gel et du dégel. Il est donc pertinent de bien connaître le milieu dans lequel se développe la glace pour pouvoir interpréter les différents indicateurs climatiques.

Selon le savoir Inuit, la salinité de l’eau est considérée comme étant un facteur très important sur le développement de la glace. Les experts locaux rapportent qu’il existe trois types d’eau : eau salée, eau saumâtre et eau douce. Le lac Guillaume-Delisle, près d’Umiujaq, et les embouchures des rivières dans les différentes baies sont de bons exemples d’environnements caractérisés par des eaux saumâtres. Entre autres, le taux de salinité de l’eau peut influencer la structure et la texture de la glace et le moment de l’englacement. Les experts Inuits soulignent que la glace d’eau salée est généralement plus souple et se forme plus tardivement que la glace d’eau douce.

« Il y a trois différentes catégories d’eau : l’eau salée, l’eau saumâtre et l’eau douce. La glace se forme de différentes façons selon la salinité et possède différentes caractéristiques. » David Niviaxie, Umiujaq

« La glace de lac devient comme du verre et la glace de mer comme du caoutchouc. Vous pouvez marcher sur la glace de mer même si elle rebondit sous vos pieds. Vous pouvez dire si vous pouvez marcher ou non sur celle-ci en regardant quelle température il fait dehors. » Mattiusi Iyaituk, Ivujivik

« La glace se forme plus rapidement dans le fjord de la baie parce l’eau salée est mélangée avec l’eau douce. La glace est alors plus solide (rigide)
que la glace formée d’eau salée. La glace fait d’eau douce est plus glissante. » Yaaka Yaaka, Kangiqsujuaq

La profondeur de la colonne d’eau est aussi un facteur important sur la dynamique de la glace. Ces mêmes experts soulignent que le transfert de chaleur se fait plus lentement dans une importante colonne d’eau, ce qui retarde la formation de la glace. De plus, ils rapportent que les endroits à faible niveau d’eau peuvent être toutefois influencés par les courants. Les zones présentant de forts courants sont d’ailleurs les zones les plus dangereuses puisque la glace y demeure plus mince tout au long de l’hiver qu’ailleurs dans le même secteur. Le fetch, qui correspond à l’étendue de la zone du lac dans laquelle le vent soulève les vagues, serait aussi à considérer sur le début de formation de la glace. Un lac possédant un grand diamètre est davantage soumis à l’emprise du vent, ce qui retarde d’autant plus la formation de la glace en automne.

« La glace au centre des lacs les plus grands n’est pas épaisse en raison de la profondeur de l’eau. » Donald Peastitute, Kawawachikamach.

« Il y a aussi la profondeur de l’eau. Si elle est profonde, la glace est plus solide que dans les endroits à faibles niveaux. Le courant joue un rôle important. Dans les zones à faible niveau d’eau le courant est plus fort. » David Niviaxie, Umiujaq.

« La profondeur influence la formation de la glace d’eau douce. La formation de la glace est retardée dans les secteurs à forts courants et en eau profonde…la glace (de lac et de rivière) va se former plus rapidement dans les eaux peu profondes. Le milieu du lac s’englace plus tardivement en raison de la profondeur plus importante de l’eau et aussi le vent y est généralement plus fort. » Susie Morgan, Kangiqsualujuaq.
« Lorsqu’il y a un grand lac, l’embouchure de la rivière (la glace) est très mince en raison du courant. L’eau se déplace dans la rivière et ne gèle pas comme au centre du lac. Sur la rive des lacs, il est sécuritaire de se promener à pied. Mais au centre, il peut être dangereux. La plupart des rivières ne sont pas sécuritaires. » Mattiusi Iyaituk, Ivujivik.

« Les rapides et les barrages sont des endroits dangereux parce que la glace y est mince. » Tommy Einish, Kawawachikamach.

« Sur la glace de mer, vous devez savoir où se trouvent les courants. Parce que là où il y a des courants, il n’est pas sécuritaire de s’y déplacer. À Ivujivik, nous avons beaucoup de courants. La glace demeure mince et lorsqu’il fait plus doux il se crée des polynies. À ce moment, vous ne pouvez pas aller à la chasse aux phoques. Mattiusi Iyaituk, Ivujivik.

Ces experts reconnaissent aussi que l’élévation altitudinale des lacs influence la période d’englacement. Les lacs situés plus en altitude vont s’englacier plus tôt et vont avoir une glace généralement plus épaisse que les autres lacs de la même région.

« Aussi, il y a une petite différence selon l’élévation même si nous sommes dans la même région. La glace (de lac) des collines va être plus épaisse que la glace des lacs des terres les plus basses. » Paulasi Qaunaaluk, Ivujivik.
iv. La sécurité de la glace (3.2)*

Plusieurs outils ou connaissances sont utilisés pour déterminer la sécurité de la glace. Les experts de la région peuvent mesurer directement l’épaisseur de la glace d’un lac jugé représentatif des autres lacs de la région. Ils se servent aussi d’indicateurs climatiques telle la température journalière. La plupart des personnes interviewées estiment qu’il faut de 2 à 3 jours de temps froid pour que la glace de lac et de mer se forme et qu’elle devienne sécuritaire. Le nombre de jours nécessaires varie toutefois s’il y a présence de vent ou de neige. Le suivi de glace (section 5.2.1), réalisé par les chercheurs locaux des communautés et en collaboration avec le Consortium Ouranos, vise d’ailleurs à quantifier les indicateurs climatiques les plus appropriés et qui tiennent compte de la perspective inuite et naskapi pour déterminer la sécurité de la glace pour les déplacements. L’observation de l’environnement est aussi importante. Par exemple, il est essentiel de savoir où sont situés les embouchures de rivières, les rapides et les courants. Ces milieux favorisent la présence d’une glace plus mince.

« L’observation de la glace aide à savoir si elle est sécuritaire. Il est important d’observer la formation de la glace dès le début et de connaître l’environnement. Il y a des lacs qui sont de bons indicateurs (de l’épaisseur) des lacs de la région. Les lacs des îles Manitounuk, au niveau d’Umiujaq, peuvent aider à savoir si les autres lacs sont sécuritaires. »
Joshua Sala, Umiujaq

« L’épaisseur du premier lac que je vérifie, je peux savoir l’épaisseur (de la glace) des autres lacs. » Henry Alayco, Akulivik.

« Vous devez observer la glace (de mer), comment elle se forme. Mais habituellement après trois journées froides vous pouvez marcher sur celle-ci…Vous devez observer où sont les petites rivières aux alentours, vous
Vous devez connaître le terrain pour savoir si la glace est sécuritaire ou non. Dans le secteur où vous vivez, si vous voulez savoir si la glace (de lac) va devenir sécuritaire, vous devez l’observer continuellement. Une personne qui n’a pas été dans le secteur ne sait rien du tout. Vous devez être dans le secteur pour savoir si c’est sécuritaire. La seule façon réelle est d’observer. » Joshua Sala, Umiujaq

« Pour connaître la différence entre glace (de mer) mince et glace épaisse, vous devez toujours savoir où sont les zones à risque. » Yaaka Yaaka, Kangiqsujuaq

« Sur la glace de mer vous devez savoir où sont les courants. Parce qu’à certains endroits où il n’y a pas de courants c’est sécuritaire. Mais à Ivujivik il y a beaucoup de courants. Vous devez savoir parce qu’à ces endroits la glace demeure mince. Lorsqu’il commence à faire plus chaud, des trous dans la glace se forment et vous ne pouvez plus aller à la chasse aux phoques. » Mattiusi Iyaituk, Ivujivik.

« La zone la plus dangereuse dans la baie (Ungava, Kangiqsualujjuaq) est l’embouchure de la rivière. Par exemple, le printemps, il y a des courants. C’est pire au printemps. J’ai peur de tomber dans un trou d’eau dans la zone côtière. » Susie Morgan, Kangiqsualujjuaq

L’utilisation du harpon demeure un outil efficace pour tester la solidité de la glace surtout en début de saison hivernale. Selon David Niviaxie d’Umiujaq, « si vous frappez la glace (de mer) et que celle-ci ne cède pas, même si elle crée des rebonds, elle est sécuritaire. » Pour la glace d’eau douce il est aussi possible d’utiliser le harpon. Selon Susie Morgan de Kangiqsualujjuaq et Tommy Einish de Kawawachikamach, il est...
possible de vérifier la glace avec un bâton ou un harpon. Si vous frappez avec votre harpon et que celui-ci passe au travers de la glace (d’eau douce), ce n’est pas sécuritaire pour s’y déplacer. Si vous frappez de cinq à six fois et que la glace ne cède pas, celle-ci est sécuritaire pour s’y déplacer. Les experts locaux de la glace peuvent aussi juger la sécurité de la glace par le son de celle-ci suite à un coup de harpon. Selon Mattiussi Iyaituk d’Ivujivik, « la glace de lac possède toujours le même son… Si vous utilisez un harpon pour frapper la (nouvelle) glace et que vous entendez un craquement qui ressemble au bruit du tonnerre, ce n’est pas sécuritaire de s’y déplacer ».

Observation des couleurs de la glace

L’évolution des couleurs de la glace pendant la période de fonte semble être un indicateur de l’état de la glace qui peut être utilisé pour déterminer la sécurité de la glace. Selon les chasseurs d’Umiujaq, la fonte de la glace de certains secteurs de la baie d’Hudson (aire où il n’y a pas de forts courants) suit trois phases (tableau 3). La première phase (*upingasak*) est caractérisée par une glace blanche (fin d’hiver) qui est inondée par l’eau de fonte. La glace adopte alors une couleur bleue. Si la quantité d’eau est importante, la glace peut prendre la couleur noire. Au début de la seconde phase (*akunaagiq*), l’eau qui submergeait la glace retourne sous celle-ci et la glace redevient blanche. La fonte de la glace due au réchauffement de la température de l’air et à l’accumulation d’eau de pluie est responsable de l’inondation de la glace. Celle-ci adopte une couleur bleue pour une seconde fois. Si une importante couche d’eau est présente, la glace devient à nouveau noire. C’est à partir de ce moment que la glace cesse d’être sécuritaire pour la circulation. Au cours de la troisième phase (*upingaak*), la glace devient alors blanche et brune avant de fondre.
Tableau 3 : Phases de la glace de mer en période de fonte dans un environnement sans courant.

<table>
<thead>
<tr>
<th>Phase de la glace au cours de la fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Couleur de la glace</td>
</tr>
<tr>
<td>Blanche</td>
</tr>
<tr>
<td>Sécuritaire</td>
</tr>
</tbody>
</table>

Tableau 4 : Phase de la glace de mer en période de fonte dans un environnement avec courant.

<table>
<thead>
<tr>
<th>Phase de la glace au cours de la fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Une seule phase</td>
</tr>
<tr>
<td>Couleur de la glace</td>
</tr>
<tr>
<td>Blanche</td>
</tr>
<tr>
<td>Sécuritaire</td>
</tr>
</tbody>
</table>

Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008
Selon les mêmes chasseurs expérimentés, dans les environnements salins de certains secteurs de la baie d’Hudson caractérisés par les courants, la glace peut adopter différentes couleurs pendant la période de fonte (tableau 3). La fonte de la glace suit alors une seule phase. L’eau inonde alors la glace, donnant à celle-ci la couleur noire, qui devient dangereuse pour toute circulation. Finalement, la glace acquiert la couleur brune avant de fondre.

5.1.5 Adaptations en cours (3.2)*

Plusieurs initiatives ou adaptations sont utilisées ou ont été mises sur pied pour permettre un accès au territoire et aux ressources plus sécuritaires. Plusieurs adaptations individuelles peuvent consister parfois à un changement des habitudes des chasseurs ou l’utilisation de nouveaux équipements. Plusieurs initiatives régionales ou communautaires via des programmes d’aides aux chasseurs ou de nouvelles infrastructures ont été développées.

i. Adaptations individuelles

Plusieurs adaptations individuelles sont utilisées par les chasseurs des communautés du Nunavik et du Nord du Québec. D’abord les chasseurs utilisent de nouveaux équipements utiles pour la navigation et la communication tels les GPS et les téléphones satellitaires. Au Nunavik, ce type de matériel peut être acheté via le programme d’aide aux Inuits pour leurs activités de chasse, de pêche et de piégeage du Service des ressources renouvelables de l’Administration régionale Kativik (http://krg.ca/). Les chasseurs vont contourner les zones à risque ou retarder leurs déplacements dans le secteur où les courants marins sont forts. Le détroit d’Hudson est un exemple où la glace est maintenant plus mince et instable qu’auparavant et où les utilisateurs de motoneige doivent être alertes. Dans ce secteur, les voies terrestres sont davantage utilisées que dans le passé. La transmission du savoir traditionnel permet aussi
d’améliorer la capacité d’adaptation individuelle. Le savoir portant entre autres sur l’environnement, cumulatif de génération en génération, permet une compréhension du milieu et des processus en cours. Toutefois même si les adaptations individuelles sont déjà présentes et adaptées aux changements climatiques cours, il n’est pas possible de savoir si certains chasseurs demeurent plus à risque que d’autres. Il est possible que l’utilisation de ces adaptations ne soit pas uniforme parmi la population et qu’elle dépende, entre autres, de facteurs socio-économiques tels l’âge et le revenu des individus qui peuvent influencer les habitudes et l’accessibilité à un équipement approprié pour les expéditions.

ii. Initiatives locales et régionales

Plusieurs initiatives locales et régionales permettent de bonifier l’adaptation aux changements climatiques en cours et de rendre les déplacements plus sécuritaires. D’abord les radios communautaires présentent dans les communautés diffusent l’information sur la qualité des sentiers et des zones à risques. Les chasseurs peuvent informer leurs collègues ou être informés par eux sur l’évolution des conditions des sentiers. D’autres initiatives sont en cours et visent par exemple à améliorer l’accès au territoire par le marquage des sentiers de motoneige. Ce projet, mené par le Service des ressources renouvelables de l’Administration régionale Kativik, vise à marquer les principaux sentiers entre les villages par des bornes. Ce projet sera mené à terme dans la prochaine année. Un autre projet vise l’amélioration de l’accès au territoire par la construction d’infrastructures de transport. Le Village nordique de Quaqtaq prévoit de construire une piste d’atterrissage près du lac Roberts pour permettre un accès sécuritaire au secteur notamment pendant la période printanière qui est maintenant plus hâtive. Finalement, une organisation d'opérations de recherche et de sauvetage pour les chasseurs existe via l’Administration régionale Kativik. En cas d’urgence, les chasseurs peuvent rejointre le Service des ressources renouvelables par téléphone satellitaire et demander assistance.
5.2 Évaluer les futurs impacts potentiels des changements climatiques sur l’accès au territoire et aux ressources par des scénarios climatiques et des suivis communautaires (3.1)*

L’évaluation des futurs impacts potentiels des changements climatiques sur l’accès au territoire et aux ressources est aussi un objectif de l’équipe de recherche. Cet objectif est en cours de réalisation. Bien que le financement se termine le 31 mars 2008, le suivi communautaire de la glace (section 5.2.1) se poursuivra jusqu’à la fin de la saison hivernale puisque d’importantes données seront prélevées pendant la période de fonte de la glace. L’équipe poursuit des mesures de glace et de neige ainsi que des entrevues avec les chasseurs sur les observations liées à la glace et aux conditions des sentiers. Davantage de données provenant des communautés étaient nécessaires pour constituer des indicateurs météorologiques fiables. Déjà des entrevues ont déjà été réalisées pour déterminer les indicateurs météorologiques potentiels (température, précipitations etc...; section 5.1.4) selon la perception des communautés. Toutefois, l’analyse combinée du suivi de glace et de données météorologiques permettront de mieux quantifier ces indicateurs identifiés par les chasseurs et les aînés et, éventuellement, de produire des scénarios représentant l’accessibilité du territoire dans un contexte de réchauffement climatique.

5.2.1 Le suivi de glace (3.2)*

Un programme de suivi de glace dans les communautés participantes a été mis sur pied dans le cadre de ce projet. Le suivi de glace répond à un objectif d’amélioration des compétences locales d’adaptation et se poursuivra au-delà du présent projet (le suivi de glace se poursuivra grâce à un financement de l’Année Polaire Internationale). Au cours de la période de réalisation du projet de recherche, les mesures issues du suivi de glace servent à développer des indicateurs climatiques qui guideront les utilisateurs des sentiers pour déterminer si la glace (marine et lacustre) est sécuritaire pour les déplacements.

Des informations liées à la qualité des sentiers hivernaux (moment de la formation de la glace, accessibilité des sentiers, zones à risque...) sont recueillies sur une base hebdomadaire. L’information sur l’état des sentiers est complétée par des mesures de l’épaisseur de la glace dans les zones jugées représentatives du réseau, notamment les lacs témoins identifiés par les chasseurs expérimentés et les ainés. Ces mesures sont réalisées pour la glace d’eau douce et la glace de mer. Un nouveau protocole de mesure a été adopté pour l’hiver 2005-2006 afin d’améliorer la qualité de l’information recueillie. Au lieu de prendre une seule mesure de neige, qui n’était pas toujours représentative des congères environnantes en raison de l’effet du vent, de la topographie, etc., neuf mesures sont prises autour de la mesure de glace (figure 15). Les mesures de glace et de neige sont prises autour des communautés Kangiqsualujjuaq, Kangiqsujuaq, Kawawachikamach et Umiujaq depuis l’hiver 2004-2005. Le suivi de glace pour la communauté d’Akulivik a commencé au cours de la saison hivernale 2006-2007. Les informations provenant des courtes entrevues hebdomadaires ainsi que des mesures de glace servent à développer un (ou une série d’) indicateur(s) climatique(s) du développement de la glace de mer de d’eau douce qui est(son) pertinente(s) selon la perspective inuite et naskapie de la dynamique de la glace.

Le développement d’indicateurs climatiques (ex : degrés jours de gel; figures 16 et 17) se base sur la comparaison systématique des observations de terrain (ex : épaisseur de glace) avec les informations tirées des entrevues hebdomadaires avec les utilisateurs des sentiers. Les données météorologiques proviennent des stations d’Environnement Canada et du Centre d’études nordiques de l’Université Laval qui sont localisées à proximité des communautés. Ces données sont comparées aux résultats de modèles climatiques (NCEP, NARR) afin de déterminer la fiabilité des ces modèles pour
reproduire les indicateurs choisis. Des scénarios climatiques sont aussi préparés par Ouranos à partir de Modèles de circulations générales (GCM) qui sont utilisés pour déterminer les tendances climatiques du 21ème siècle dans la zone d'étude. Les simulations du Modèle régional canadien du Climat (MRCC), développé par Ouranos, permettront de déterminer l’évolution future des indicateurs climatiques de l’état des glaces et de la variabilité du climat.

Les entrevues ont permis jusqu’à ce jour de documenter le savoir traditionnel relatif à la sécurité de la glace et d’identifier des indicateurs quantifiables du climat qui sont utiles pour évaluer l’épaisseur de glace pendant la saison froide tout en demeurant représentatifs des observations de la dynamique des glaces par les Inuits et les Naskapis (figure 16). Les analyses des données météorologiques locales ont permis, entre autres, de mettre en relation l’épaisseur de la glace de lac et la somme des degrés-jours de gel (<0°C). A partir des observations des utilisateurs des sentiers issues des courtes entrevues hebdomadaires, il est possible d’établir un seuil minimum de degré-jours de gel pour que la glace soit considérée sécuritaire (figure 17). La glace de mer semble répondre à des facteurs environnementaux et météorologiques plus complexes. L’installation des deux nouvelles stations météorologiques mobiles par l’équipe de recherche au cours des deux derniers hivers visait à mieux documenter d’autres paramètres météorologiques locaux également représentatifs du savoir Inuit et de bonifier les indicateurs climatiques.

5.2.2 Stations météorologiques (3.2)*

Dans le but d’améliorer le développement d’indicateurs climatiques du développement de la glace de mer, deux stations météorologiques ont été installées sur la glace de mer près des communautés d’Umiujaq et d’Akulivik en 2007 et 2008 (figure 18). Ces stations permettent de documenter les paramètres météorologiques associés à la température (air, glace et interface air-glace), l’humidité relative, la vitesse et direction du vent et la radiation solaire. Les données acquises sont transmises à l’ordinateur du
chercheur local via communication modem et peuvent être par la suite transmises au chercheur principal via Internet. Ces stations n’ont pas répondu à nos objectifs pour plusieurs raisons. Bien que le type de station utilisée soit simple et facile à monter, les problèmes techniques mineurs peuvent devenir insolvables par les chercheurs locaux dans la communauté à moins d’une visite du chercheur principal dans la communauté. Des problèmes techniques associés entre autres à l’alimentation électrique et à la configuration du logiciel téléchargeant les données n’ont pas pu permettre l’acquisition de données suffisantes pour être analysées. Pour corriger ses difficultés rencontrées, il serait préférable que ce type de stations soit installé de façon permanente le long de la côte, alimenté à un panneau solaire assurant une alimentation électrique continue et de réaliser le téléchargement des données du dataloger lors de la visite annuelle du chercheur principal.
Figure 15 : Protocole de mesure adopté au cours de la saison 2005-2006. Neuf mesures du niveau de neige et une mesure de l’épaisseur de glace sont réalisées pour les milieux lacustre et salin.
Figure 16 : Suivi de glace à Kangiqsujuaq pour la saison 2006-2007. Des mesures ont été effectuées pour documenter à la fois la glace de mer et de lac. Les entrevues avec les utilisateurs des sentiers permettent de déterminer le moment où la glace est sécuritaire.
Figure 17 : La relation entre la somme de degrés-jours de gel et l’épaisseur de la glace de lac.
Figure 18 : Deux stations de suivi de glace de mer ont été installées dans les communautés d’Umiujaq et d’Akulivik le long de la baie d’Hudson pour les hivers 2007 et 2008. Ces stations enregistrent entre autres la température de l’air, l’humidité relative, la vitesse et la direction du vent et la radiation solaire (Photo : Eli Angiyou).
5.3 Partenariats et renforcement des capacités dans le Nord (3.3 et 3.4)*

Le projet de recherche rassemble des partenaires avec diverses perspectives sur les questions liées à l'accès au territoire et aux ressources au Nunavik et au Nord du Québec (tableau 5). La participation des communautés est la pierre angulaire du projet. Cette participation est organisée et soutenue par un chercheur local responsable du développement du projet de recherche dans chaque communauté et de la liaison entre les membres de la communauté et les scientifiques impliqués dans le projet. Dans le meilleur des cas, le but est que la communauté prenne la responsabilité, autant que possible, du projet de recherche et de le diriger de manière à mieux trouver des solutions pour les questions qui les concernent directement. Le renforcement des capacités dans les communautés s’est fait par l’implication des chercheurs locaux dans les communautés, la réalisation de formations pour les chercheurs locaux lors des rencontres d’équipe biannuelles et la visite d’écoles secondaires.

5.3.1 Implication du chercheur local dans le projet

Le projet de recherche contribue à l'augmentation de la capacité de la communauté à rassembler, comprendre, fournir et employer l'information locale liée aux changements climatiques et environnementaux en cours. Pour renforcer les capacités dans le Nord, le projet favorise une recherche dans le nord, pour le nord et par le nord. À cet effet, un chercheur local actif et qualifié est présent dans toutes les communautés sauf dans une. Dans ce cas-ci, le chercheur d'Akulivik est responsable de la recherche dans la communauté d'Ivujivik. Les chercheurs locaux sont responsables de rassembler les données et sont entièrement impliqués, comme associés avec les scientifiques, dans le développement des stratégies d'adaptation basées sur l'analyse et l'interprétation des résultats. Par exemple, les chercheurs locaux sont responsables de conduire les entrevues semi-structurées et de rassembler les données quantitatives du suivi de glace.
Tableau 5 : Liste des partenaires et leurs contributions

<table>
<thead>
<tr>
<th>Partenaires</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services des ressources renouvelables, ARK</td>
<td>Leader du projet</td>
</tr>
<tr>
<td>Trent University</td>
<td>Co-leader du projet</td>
</tr>
<tr>
<td>Année Polaire Internationale</td>
<td>Financement</td>
</tr>
<tr>
<td>ArcticNet</td>
<td>Financement</td>
</tr>
<tr>
<td>Centre d’études nordiques – Université Laval</td>
<td>Données météorologiques des villages</td>
</tr>
<tr>
<td>Consortium Ouranos</td>
<td>Développement des indicateurs et des scénarios climatiques</td>
</tr>
<tr>
<td>Ecoles Akulivik, Ivujivik, Kangiqsualujjuaq, Kangiqsujuaq et Umiujaq</td>
<td>Financement</td>
</tr>
<tr>
<td>Initiatives des écosystèmes nordique – Environnement Canada</td>
<td>Financement</td>
</tr>
<tr>
<td>Nation Naskapi de Kawawachikamach</td>
<td>Aide logistique et participation au projet</td>
</tr>
<tr>
<td>Programme sur les impacts et adaptations liés aux changements climatiques</td>
<td>Financement</td>
</tr>
<tr>
<td>aux changements climatiques – Ressources Naturelles Canada</td>
<td></td>
</tr>
<tr>
<td>Société Makivik</td>
<td>Aide Cartographique</td>
</tr>
<tr>
<td>Transports Québec</td>
<td>Financement</td>
</tr>
<tr>
<td>Unité de santé publique CHUL-CHUQ et Centre Nasivvik – Université Laval</td>
<td>Financement</td>
</tr>
<tr>
<td>Université du Manitoba</td>
<td>Stations météorologiques mobiles</td>
</tr>
<tr>
<td>Village nordique d’Akulivik</td>
<td>Aide logistique et participation au projet</td>
</tr>
<tr>
<td>Village nordique d’Ivujivik</td>
<td>Aide logistique et participation au projet</td>
</tr>
<tr>
<td>Village nordique d’Umiujaq</td>
<td>Aide logistique et participation au projet</td>
</tr>
<tr>
<td>Village nordique de Kangiqsualujjuaq</td>
<td>Aide logistique et participation au projet</td>
</tr>
<tr>
<td>Village nordique de Kangiqsujuaq</td>
<td>Aide logistique et participation au projet</td>
</tr>
</tbody>
</table>
Ils sont également responsables de la communication d'information du projet à la population locale. Dans certains cas, certains des chercheurs locaux ont également présenté des résultats d'étude lors des réunions scientifiques et des conférences en dehors de leur région (section 7.2).

5.3.2 Rencontres d'équipe

La formation des chercheurs locaux a été une étape significative dans le développement de la recherche. Les chercheurs locaux ont participé à des réunions d'équipe pendant lesquelles les travaux sur le terrain ont été projetés et organisés. Ces réunions saisonnières ont été une occasion pour les chercheurs locaux de passer en revue les méthodes employées pendant l'année précédente et d'identifier les besoins de formation liés à ces activités ou liés à toutes les nouvelles méthodes employées au cours de la prochaine saison. Le but principal de ces formations continues a été d’assurer que les chercheurs locaux aient la capacité de prendre progressivement le contrôle du projet dans leur propre communauté. L’équipe a tenu les réunions suivantes :

- Mai 2005, Montréal : bilan de fin de saison.
- Octobre 2005, Kuujjuaq : synthèse, objectifs de la saison et formation.
- Novembre 2006, Kuujjuaq : synthèse, objectifs de la saison et formation.
- Novembre 2007, Montréal : synthèse, objectifs de la saison et formation.
5.3.3 Rencontres dans les écoles

5.4. Nouveaux partenariats et initiatives internationales (3.5 et 3.6)*

De nouveaux partenariats ont été réalisés. Le projet d’accès au territoire et aux ressources se poursuivra au cours des prochaines années via l’Année Polaire Internationale en association avec les Universités Trent et Carleton. Les membres de notre équipe de recherche participent activement à d’autres projets d’Année Internationale Polaire à titre de collaborateurs de l’INRS-ETE sur le suivi du pergélisol et le suivi de la glace de la rivière Koksoak avec des images RADARSAT (pour plus d’information consultez le site Internet : http://climatechange.krg.ca/kuujjuaq.html) et avec Environnement Canada sur un projet de mesures automatisées d’épaisseur de glace pour la rivière Koksoak.
6. Produits (4.0)*

Plusieurs produits sont issus de ce projet et sont destinés prioritairement aux gens des communautés. Le projet offre un site Internet où il est possible d’avoir les données à jour du projet. Des cartes électroniques des sentiers et des zones à risque et un guide de bonnes pratiques sont disponibles. Un CD-ROM sera bientôt disponible contant des entrevues abordant le savoir traditionnel avec les chasseurs expérimentés et les aînées de même que tout le matériel produit pendant le projet.

6.1 Site Internet

Le site Internet du projet est mis à jour sur une base régulière (http://climatechange.krg.ca/; figure 19). L’objectif est de diffuser l’information du projet aux utilisateurs (et futurs utilisateurs) des réseaux de sentiers. Plus précisément, le site Internet donne accès à l’information recueillie dans le cadre du suivi de glace des communautés participantes, soit les mesures hebdomadaires des épaisseurs de glace ainsi que les observations locales sur l’état des sentiers. Le site donne accès à des cartes régionales des sentiers et des zones à risque en format PDF de même que les derniers rapports et publications. De nombreux liens Internet pertinents sont accessibles via le site comme, entre autres, les prévisions météorologiques d’Environnement Canada et le tableau des marées. Le site Internet est un médium important pour la diffusion de l’information. Plusieurs des chercheurs locaux des communautés impliquées ont confirmé que les résidents trouvaient utiles les informations qui s’y trouvaient. Le site Internet s’est aussi révélé une vitrine importante pour le projet pour les gens du sud. Plusieurs personnes ont d’ailleurs contacté des membres de l’équipe de recherche après avoir visité le site Internet.
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008

Figure 19 : Le site Internet du projet. Les informations sur le projet, les résultats du suivi de glace et les cartes validées sont disponibles sur le site.
6.2 Les cartes électroniques

L’équipe de recherche, avec la collaboration des chasseurs expérimentés et des aînés du Nunavik et du Québec nordique, a produit des cartes électroniques contenant les sentiers traditionnels du Québec nordique provenant des entrevues réalisées par les chercheurs locaux (figure 12 et 13). Les cartes contiennent des informations sur les itinéraires d'été et d'hiver utilisés pour fournir l'accès au territoire et aux ressources pour les secteurs d’Akulivik, Ivujivik, Kangiqsualujjuaq, Kangiqsujuaq, Kawawachikamach et Umiujaq (figure 20). Ces cartes contiennent des informations sur les principaux sentiers selon le mode de transport (motoneige, traineau à chiens quatre-roues, canoë, hors-bord et camion) utilisés pour des activités de chasse, de pêche et de piégeage. L’atlas contient également des informations sur « les secteurs à risque » où les utilisateurs des sentiers doivent être particulièrement attentifs, surtout lors des périodes de gel-dégel. D’autres informations sont aussi disponibles telle la localisation des principaux abris (refuges) pouvant être utilisés en cas d’urgence.

Les cartes électroniques présentent des liens interactifs qui permettent de naviguer facilement dans le document. Une première carte du nord du Québec y est présentée. Cette carte permet à l’utilisateur de l’atlas de sélectionner la communauté désirée (figure 21). En sélectionnant le nom de la communauté avec la souris de l’ordinateur, l’utilisateur est automatiquement dirigé vers les cartes de la communauté. Une carte régionale (figure 22) est alors présentée et peut être utilisée à titre d’index pour atteindre les cartes détaillées (figure 23). L’utilisateur peut ainsi accéder à la carte désirée. Sur chacune des cartes détaillées, il est possible de savoir quelle est la carte qui se trouve au sud, à l’est, au nord et à l’ouest. L’utilisateur peut se déplacer d’une carte à l’autre de cette façon en sélectionnant les zones de cartes qui voisinent la carte principale. Toutes les cartes contenues dans l’atlas sont en format « lettre » et peuvent être imprimées facilement et lisiblement sur une imprimante standard en noir et blanc. Des cartes grands...
Figure 20 : Cartes des principaux sentiers entourant certaines communautés du Nunavik et du Nord du Québec. Les cartes sont disponibles en format PDF et peuvent être imprimées sur du papier de format lettre (8,5 x 11) en noir et blanc ou en couleur. L’atlas est également disponible sous forme de cd et sur le site Internet.
Figure 21 : L'atlas électronique identifie les sentiers traditionnels des secteurs d’Akulivik, Ivujivik, Kangiqsualujjuaq, de Kangiqsujuaq, de Kawawachikamach et d'Umiujaq.
Figure 22 : Carte régionale d'Umiujaq. La carte régionale identifie les cartes détaillées disponibles pour le secteur.
Figure 23 : Cartes détaillées du secteur d’Umiujaq. Chaque carte détaillée est disponible individuellement pour permettre une meilleure précision de l'information sur le réseau de sentiers.
formats sont aussi disponibles sur le site Internet (Annexe 1). Elles sont distribuées dans les communautés. Les membres des communautés sont invités à y apporter les mises à jour qu’ils jugent utiles. Les mises à jour des cartes peuvent se faire sur la base annuelle et les cartes redistribuées dans les communautés pour être de nouveau affichées.

6.3 Guide de bonne pratique

6.4 CD interactif

L’équipe a travaillé au développement d’un CD-ROM interactif qui pourra être employé comme outils d'éducation et de communication pour les communautés et les écoles du Nunavik sur le sujet des changements climatiques et l’accès territoire et aux ressources. Le projet incorpore des entrevues sur vidéos avec des chasseurs et des aînés du Nunavik et inclu des connaissances traditionnelles et scientifiques. Le projet a été réalisé avec les écoles du Nunavik (section 5.3.3), les membres des communautés visités et les chercheurs locaux. Le CD-ROM interactif est un outil efficace pour communiquer et diffuser l’information sur les changements climatiques et environnementaux aux résidents (incluant les jeunes) de la communauté et spécifiquement aux étudiants et aux
futurs chasseurs/pêcheurs actifs aussi bien que les décideurs municipaux. Le CD-ROM est en cours de finalisation.
7. Communication (5.0)*

La diffusion des résultats auprès des communautés nordiques, des membres de la communauté scientifique et du grand public est aussi une priorité de ce projet. La mise à jour du site Internet a permis de mettre en ligne des informations utiles pour les gens des communautés participantes. Les résultats de l’étude ont été présentés à la communauté scientifique, aux partenaires et au grand public sous formes d’affiches, de conférences, d’entrevues radiophoniques et télévisuelles, de publications scientifiques, de rapports d’étapes et d’ateliers divers. La diffusion des résultats par les chercheurs locaux a été privilégiée tout au long du projet.

7.1 Affiches

Plusieurs outils de communication ont été réalisés au cours de la dernière année. Le projet de recherche a suscité beaucoup d’intérêt, à la fois du grand public et de la communauté scientifique. Le projet de recherche a été présenté, sous la forme d’affiche, aux événements suivants :

7.2 Conférences

Le projet de recherche a été présenté dans plusieurs rencontres avec les partenaires et conférences scientifiques. Entre autres, le projet a été présenté lors de la rencontre Ouranos en mai, au congrès annuel de l’Association Canadienne des Géographes à Thunder Bay en juin, à la conférence Zone côtière Canada 2006 à Tuktoyaktuk en août 2006. Il est à préciser que la plupart des présentations ont été faites par le chercheur principal du projet en collaboration avec un des chercheurs locaux (figure 24).

7.3 Entrevues

Le projet de recherche a aussi suscité de l’intérêt auprès des médias. Des entrevues ont été accordées à différentes émissions de radio et de télévision. Quelques entrevues ont été réalisées pour les journaux. Plusieurs articles ont été publiés dans les magazines, journaux et sur Internet :

• Réseau APTN, printemps 2005.
• Radio-Canada, Dimanche magazine, automne 2005.
• Radio-Canada, Boréal Hebdo, 23 avril 2006.
• CBC radio, émission du matin, 27 septembre 2006.
• ITK Magazine, hiver 2006
• (http://www.itk.ca/inuk-mag/magazines/InukMagazine99.pdf)
• CBC radio, 23 juillet 2007
• La Presse, 22 juillet 2007
• Calgary Herold, 24 juillet 2007
• MacLeans, 24 juillet 2007
• USA Today, 24 juillet 2007
• The Star, 24 juillet 2007
• News Day, 24 juillet 2007
• Meadow Free Press, 24 juillet 2007
• MSNBC, 24 juillet 2007
• Yahoo News, 24 juillet 2007
• Sympatico MSN, 24 juillet 2007
• TELUS News, 24 juillet 2007
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008
Figure 24 : Conférence Zone côtière Canada 2006, Tuktuyaktuk, Territoires-tu-Nord-Ouest, Août 2006 (Photo : Claude St-Charles). Tuumasi Annanack a présenté les principales tâches que le chercheur local doit effectuer dans le projet de recherche, notamment les entrevues avec les chasseurs et les aînés ainsi que le suivi de glace.
7.4 Publications scientifiques

Le projet a été publié dans un ouvrage collectif édité par Mme Jill Oakes de l’Université du Manitoba (Annexe 5). Le texte forme un chapitre qui porte sur l’utilisation conjointe du savoir traditionnel Inuit et des connaissances scientifiques. Ce chapitre, qui est publié dans le livre « Climate Change: Linking Traditional and Scientific Knowledge » résume bien l’intérêt de favoriser une approche intégrée pour développer des stratégies d’adaptation aux changements climatiques et environnementaux.

Un deuxième texte est maintenant sous presse pour la revue Arctic et se concentre plutôt sur l’intégration des acteurs « du Nord », particulièrement des chercheurs locaux et des gens de la communauté, dans un projet de suivi communautaire (Annexe 5). On y discute de l’importance de la participation communautaire, particulièrement des gens du Nunavik, dans les différentes étapes du projet. Entre autres, on y souligne que le projet permet aux gens de la communauté de s’approprier davantage celui-ci et de s’assurer que la recherche porte sur les enjeux importants pour les résidents de la région et que les stratégies d’adaptation développées correspondent à leurs besoins.

7.5 Rapports d’étapes

Des rapports d’étapes ont été rédigés à intervalle régulier tout au long du projet afin de présenter l’évolution du projet et les résultats préliminaires aux partenaires financiers du projet :

7.6 Ateliers

Annanack, T. Workshop 1: Impacts of Environmental Change in Northern Communities pendant la conférence The View From Here: the history and ecology of North Atlantic Region. Québec. Septembre 2006.
8. Conclusions et recommandations (7.0)*

8.1 Recommandations pour un accès sécuritaire au territoire

L’accès au territoire et aux ressources est essentiel pour maintenir la santé économique, sociale et culturelle du Nord du Québec. Plusieurs recommandations sont présentées pour favoriser l’accès aux ressources et au territoire sécuritaire à un coût raisonnable.

D’abord, le changement du traîneau à chiens à la motoneige a eu un impact sur la sécurité des voyages. Les chiens constituent des « outils de navigation » très efficaces pour les sorties de chasse et de pêche. Par exemple, les chiens peuvent sentir et signaler aux chasseurs la présence de glaces instables. Les chiens peuvent aussi réussir à tirer un traîneau hors de l’eau suite à une chute inopinée dans les eaux glacées et peuvent retrouver leur chemin lors d’un blizzard ou lorsque le chasseur s’est perdu. Les Naskapis n’ont pas subi cet impact puisqu’ils n’utilisaient pas les traîneaux à chien pour se déplacer. Les déplacements se faisaient plutôt par les voies pédestres.

« Dans l’ancien temps, il n’y avait pas d’accident. Lorsque la motoneige a commencé à être utilisée, les bris mécaniques sont apparus et certaines personnes sont mortes de cette façon…. Nous savons que les chiens sentent les sentiers avec leurs museaux. Même si nous ne savons pas où nous sommes, les chiens peuvent se retrouver par l’odeur. Aujourd'hui, les personnes ont peur d’aller dans les secteurs à risque, les sentiers sont surtout rocailleux et non toujours utilisables… Aujourd'hui lorsqu’une personne n’arrive pas à la date prévue, une équipe de recherche est mobilisée tout de suite. Dans l’ancien temps, même si la personne n’arrivait pas quand elle est supposée d’arriver, personne n’allait la rechercher. Les traîneaux à chiens étaient aussi capables de voyager même
en période de mauvais temps. En motoneige, vous devez par contre attendre d’avoir de bonnes conditions météorologiques pour voyager...
Dans l’ancien temps, nous utilisions les traineaux à chiens. Nous pouvions aller où nous voulions. » Paulasi Qaunaaluk, Ivujivik.

Les utilisateurs de motoneige doivent être particulièrement alertes aux zones à risque (où la glace est généralement plus mince) et de connaître leurs positions. De plus, l’utilisation d’une seconde motoneige lors des longues sorties devrait être favorisée pour éviter les problèmes potentiels associés à un bris mécanique. C’est pour cette raison que les aînés et les chasseurs expérimentés conseillent de ne jamais partir seul (avec une seule motoneige). Il est aussi conseillé d’apporter des équipements de navigation comme les « GPS » et de communication comme les téléphones satellitaires. Il est aussi conseillé de toujours connaître les prévisions météorologiques avant de réaliser une sortie afin d’éviter les mauvaises conditions météorologiques comme les blizzards.

Pour minimiser l’impact négatif sur la sécurité des déplacements lié à la présence d’un couvert de glace marine plus mince et instable du au réchauffement récent du climat, l’utilisation des équipes de chiens de traîneau pourrait être favorisée à certains moments de l’hiver comme au début de la saison. Les utilisateurs de motoneige devraient plutôt favoriser les parcours terrestres pendant une plus longue partie de la saison hivernale pour éviter les zones à risque se situant en milieu côtier. L’utilisation de la motoneige en milieux côtier, du moins dans les zones de glace nouvellement formée, devrait être faite avec beaucoup de prudence suite à examen de l’épaisseur de la glace à plusieurs endroits. De plus, il est important que l’utilisateur des sentiers connaisse assez bien le milieu et qu’il se méfie particulièrement des embouchures de rivières.

D’autre parts, le savoir traditionnel Inuit et Naskapi est relativement riche et constitue un outil important d’adaptation relatif à la sécurité des déplacements. Le savoir
traditionnel permet entre autres d’évaluer l’état de la glace en considérant les paramètres climatiques et environnementaux qui peuvent l’influencer. La transmission du savoir traditionnel devrait être valorisée surtout auprès des futurs et jeunes chasseurs. L’intégration du savoir traditionnel dans le cursus scolaire pourrait contribuer à former de futurs chasseurs outillés à faire face à un environnement en changement.

Bien que des mesures d’adaptation à faibles coûts pour un accès sécuritaire au territoire et aux ressources soient envisageables, plusieurs préoccupations demeurent notamment concernant l’accès aux ressources. L’accès aux ressources ne dépend pas seulement de l’accès au territoire. Elle peut dépendre de la dynamique des populations animales qui est à la fois influencée par les changements climatiques et environnementaux. En effet la diversité, la répartition et la densité des principales espèces chassées pourront être affectées. Les futures recherches devraient s’intéresser particulièrement à l’écologie animale et végétale (l’habitat) dans un contexte de réchauffement climatique et de disponibilité en ressources pour les populations du Nord.

8.2 Bilan du déroulement du projet et recommandations pour des suites au projet

8.2.1 Déroulement du projet: Points positifs

- Intérêt des dirigeants et des membres des communautés pour accueillir le projet;
- Intérêt des chercheurs locaux à la problématique des changements climatiques;
- Support logistique du personnel de l’Administration régionale Kativik;
- Collaboration avec les partenaires comme le Centre Nasivvik, le Consortium Ouranos, Centre d’études nordiques de l’Université Laval et l’Université du Manitoba.
8.2.2 Déroulement du projet: Points négatifs

- Recrutement difficiles des participants dans les petites communautés pour réaliser les entrevues. Suggestion : Publiciser davantage les travaux futurs ou en cours et diffuser davantage les résultats de l’étude pour que les gens voient davantage les retombées de ce type de projet;
- Coût très élevé des déplacements et de l’hébergement qui limite le nombre et la durée des visites du chercheur principal dans les communautés;
- Difficulté d’obtenir des données continues du suivi de glace par les chercheurs locaux.

8.2.3 Recommandations pour des suites à ce projet ou pour des projets similaires

- Favoriser l’apport des communautés nordiques dans l’élaboration des projets de recherche sur l’impact et l’adaptation aux changements climatiques, si possible en permettant aux communautés elles-mêmes de définir les projets et objectifs de recherche;
- Favoriser le développement de recherches dirigées à partir du Nord;
- Favoriser le financement de recherches dirigées à partir du Nord;
- Favoriser les recherches intégrées, notamment le partage d’information;
- Favoriser une étroite collaboration entre les scientifiques du Sud et les décideurs et les chercheurs du Nord pour développer les projets de recherche;
- Favoriser les collaborations entre les différents partenaires du Nord dans la réalisation de futurs projets (Makivik, Avataq, Administration régionale Kativik) pour permettre l’échange de ressources et de savoir;
- Favoriser la diffusion des résultats chez les communautés du nord (ex : cd interactifs, site Internet, synthèses etc.);
- Joindre les jeunes chasseurs/pêcheurs lors de la diffusion des résultats via les écoles;
• Continuer à sensibiliser les décideurs du Sud sur l’importance des changements climatiques et environnementaux en cours dans le Nord pour les populations et écosystèmes de la région.
9. Conclusions générales (7.2)*

Le projet a permis aussi de documenter certaines adaptations pour un accès sécuritaire au territoire et aux ressources. Par exemple, les utilisateurs des sentiers adoptent déjà des sentiers alternatifs pour contourner les zones plus à risque. Jusqu’à maintenant, cette adaptation permet l’accès au territoire sans avoir à abandonner des aires de récolte traditionnelles. L’évaluation des futurs impacts potentiels des changements climatiques sur l’accès au territoire et aux ressources est sur le point d’être complétée. Des analyses des données météorologiques et des mesures de glace sont en cours. Davantage de données étaient nécessaires avant de pouvoir présenter les différents scénarios climatiques qui guideront l’adoption de futures mesures d’adaptation.
Quelques recommandations pour un accès sécuritaire au territoire et aux ressources peuvent être formulées. Entre autres une plus grande vigilance des utilisateurs de motoneige en vérifiant régulièrement les épaisseurs de glace particulièrement au début de saison hivernale. De plus, les utilisateurs devraient favoriser les itinéraires en milieux terrestres, surtout au début d’hiver, lorsque les sentiers milieux côtiers sont à risque. Lorsque les déplacements en milieux côtiers en début d’hiver sont nécessaires, les utilisateurs des sentiers pourraient privilégier l’utilisation des traîneaux à chiens boostant les glaces instables. De plus, la transmission du savoir traditionnel concernant le développement de la glace devrait faire partie du cursus scolaire des jeunes élèves qui formeront les futurs chasseurs et utilisateurs des sentiers.

L’ARK et ses partenaires poursuivent leurs activités pour assurer un accès sécuritaire au territoire et aux ressources. Les embouchures de rivières et le milieu côtier ont été identifiés les plus sensibles aux nouvelles conditions climatiques. Parmi les principaux objectifs des prochaines années, il sera essentiel de mieux comprendre les facteurs socio-économiques et démographiques qui influencent la perception de l’exposition aux événements météorologiques dangereux et aux risques associés aux changements environnementaux liés à l’accès du territoire et des ressources. Un deuxième objectif sera de mieux documenter et caractériser le développement spatial de la glace utilisée pour les activités traditionnelles. Les activités de projet incluront des entrevues semi-structurées, des entrevues ethno-cartographiques, une surveillance communautaire des conditions de glace, des analyses de données météorologiques et des analyses d’images satellites. Ce nouvel axe de recherche permettra, entre autres, d’offrir aux communautés participantes des cartes hebdomadaires de l’état des glaces pendant les périodes annuelles de gel et de dégel.
10. Remerciements

Ce projet a été possible grâce à la participation d’experts locaux qui ont accepté généreusement de nous partager leurs connaissances. Nous tenons à remercier Charlie Alaku (Kangiqsujuaq), Alasuak Alayco (Akulivik), Henry Alayco (Akulivik), Simon Aliqu (Akulivik), Timothy Aliqu (Akulivik), Jusipi Amamatuak (Akulivik), Lucassie Amm (Akulivik), Kenny Mususi Audlaluk sr. (Ivujivik), Angnatuk (Kangiqsualujjuaq), David Annanack (Kangiqsualujjuaq), Noah Annahataq (Kangiqsujuaq), Eli Aullaluk (Akulivik), Bobby Baron (Kangiqsualujjuaq), Johnny Cookie (Umiujaq), Jobie Crow (Umiujaq), Jean Einish (Kawawachikamach), Jeremy Einish (Kawawachikamach), Philip Einish (Kawawachikamach), Tommy Einish (Kawawachikamach), Johnny Etok (Kangiqsualujjuaq), Tooma Etok (Kangiqsualujjuaq), Tivi Etok (Kangiqsualujjuaq), Joe Guanish (Kawawachikamach), Mattiusi Iyaituk (Ivujivik), Ammaamak Jaaka (Kangiqsujuaq), Paul Jararuse (Kangiqsualujjuaq), Ludi Jararuse (Kangiqsualujjuaq), Peter Billy Kiatainaq (Kangiqsujuaq), Charlie Kuarluk (Umiujaq), Jeremiah Kuarluk (Umiujaq), Willie Kuarluk (Umiujaq), Simon Makimmak (Akulivik), Adami Mangiuh (Ivujivik), Peter Matte (Akulivik), Susie Morgan (Kangiqsualujjuaq), Lukasi Nappaaluk (Knagiqsujuaq), Alex Niviaxie (Umiujaq), Davidee Niviaxie (Umiujaq), Naalak Nappaaluk (Kangiqsujuaq), Donald Peastitte (Kawawachikamach), Eyuka Pinguatuq (Kangiqsualujjuaq), Paulasi Qaunaaluk (Ivujivik), Ali Qavavauk (Ivujivik), Aquujaq Qishiq (Kangiqsualujjuaq), Kilopak Quingalik (Akulivik), Henry Quissa (Akulivik), Joshua Sala (Umiujaq), Davidee Sappa (Umiujaq), Alain Séguin (Kangiqsualujjuaq), Jean-Jacques Séguin (Kangiqsualujjuaq), David Swappie (Kawawachikamach), Noah Swappie (Kawawachikamach), Quitsak Taqriasuk (Ivujivik), Tumassie Quitsaq (Akulivik), Kathleen Tooma (Kawawachikamach), Lukasi Tukiri (Kangiqsualujjuaq), Isaac Tumic (Kangiqsualujjuaq), Saviadjuk Usuardjuk (Ivujivik), Yaaka Yaaka (Kangiqsualujjuaq). Nous sommes aussi reconnaissant aux agences suivantes qui ont fourni un appui financier: Initiative des écosystèmes nordiques – Environnement Canada, Consortium Ouranos, Centre Nasivvik à Université Laval, Centre d’études nordiques, CCIAD – Ressources
Naturelles Canada, ArcticNet, Ministère des Transports du Québec et le Comité consultatif de l’environnement Kativik. La réalisation du projet n’aurait pas été possible sans la contribution du service des Ressources renouvelables et de la section des Parcs de l’Administration régionale Kativik. Nous voudrions aussi remercier tous les individus qui ont fourni des commentaires et conseils tout au long du développement de ce projet.
11. Références

Fox et al. 2002. The are things that are really happening: Inuit perspective on the evidence and impacts of climate change in Nunavut. Pages 13-53 In Krupnik, I. & Jolly, D. (Eds.) The earth is faster now: Indigenous observations of Arctic Environmental Change., Fairbanks: ARCUS.

12. Les partenaires

Initiatives des écosystèmes nordiques
Environnement Canada

Consortium Ouranos

Société Makivik

Centre pour la santé des Inuits et des changements environnementaux
Université Laval

Centre d’études nordiques - Université Laval

Unité de santé publiques - CHUL-CHUQ

Ministère des Transports du Québec

Comité consultatif de l’environnement Kativik

Nation Naskapi de Kawawachikamach

ArcticNet

Programme sur les impacts et adaptations liés aux changements climatiques
Ressources Naturelles Canada

Année Polaire Internationale

Centre for Earth Observation Science - University of Manitoba

Northern Village of Ivujivik

Northern Village of Akulivik

Northern Village of Kangiqsualujjuaq

Northern Village of Kangiqsujuaq

Northern Village of Umiujaq
13. Signature et date

Martin Tremblay, Ph. D.
Kuujjuaq, mars 2008

Christopher Furgal, Ph. D.
Kuujjuaq, mars 2008
Annexe 1: Carte régionales en format 118 x 152 cm
(disponibles sur http://climatechange.krg.ca/).

- Akulivik
- Ivujivik
- Kangiqsualujuaq
- Kangiqsujuaq
- Kawawachikamach
- Umiujaq

Note: Les cartes sont aussi disponibles sous la forme d’atlas électronique sur le site web du projet.
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008
Annexe 2: Terminologie de la glace inuttitut
<table>
<thead>
<tr>
<th>Terminologie</th>
<th>Région</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aayaruk</td>
<td>Baie d’Hudson (Akulivik)</td>
<td>Glace surélevée en raison de la fonte de la glace et non par la pression due à la mobilité des glaces. Certains confondent ce type de glace avec piquniq.</td>
</tr>
<tr>
<td>Akunaagiq</td>
<td>Baie d’Hudson (Umiujaq)</td>
<td>Seconde phase de la fonte de la glace de mer au printemps. Par l’accumulation d’eau de fonte, la glace adopte successivement la couleur blanche, bleue et noire. Il est considérée non sécuritaire lorsqu’elle est noire. Upingasak et upingaak sont la première et la troisième phase de la fonte de glace de mer.</td>
</tr>
<tr>
<td>Allanuk</td>
<td>Baie d’Hudson (Umiujaq)</td>
<td>Glace mobile. Synonyme d’aulaniq.</td>
</tr>
<tr>
<td>Aulaniq</td>
<td>Détroit Hudson (Ivujivik)</td>
<td>Glace mobile. Synonyme d’allanuk.</td>
</tr>
<tr>
<td>Analuk</td>
<td>Baie d’Hudson (Umiujaq)</td>
<td>Gros flocons de neige qui tombent en absence de vent.</td>
</tr>
<tr>
<td>Angarutsiq</td>
<td>Baie d’Hudson (Umiujaq)</td>
<td>Vieille glace.</td>
</tr>
<tr>
<td>Aputainnaq</td>
<td>Détroit Hudson (Kangiqsuuaq)</td>
<td>Couvert par une unique couche de neige (milieu lacustre au marin).</td>
</tr>
<tr>
<td>Aukkaniq – Aukaniq</td>
<td>Détroit Hudson (Kangiqsuuaq)</td>
<td>Endroit dangereux où les courants peuvent fondre la glace lorsque la température se réchauffe. Surface d’eau non gelée en raison de forts courants. Synonyme utilisé par les Inuits du sud du Nunavik : imaknisak</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ilaruq</td>
<td>Particules ou blocs de glace reconsolidés après un cycle de dégel-gel. Ce type de glace peut former de grandes surfaces. Observée au lac Guillaume-Delisle et dans les autres milieux lacustres. Glace dangereuse ne permettant pas de s’y déplacer.</td>
<td></td>
</tr>
<tr>
<td>Illaujaq</td>
<td>Glace d’eau douce non solide formée de cristaux. Glace d’eau douce qui est entrain de fondre et forme des cristaux. Glace qui peut être épaisse formée des cristaux.</td>
<td></td>
</tr>
<tr>
<td>Iluvitaq</td>
<td>Grosse glace se déplaçant sur la baie.</td>
<td></td>
</tr>
<tr>
<td>Imaknisak</td>
<td>Endroit dangereux où les courants peuvent fondre la glace lorsque la température se réchauffe. Surface d’eau non gelée en raison de forts courants. Synonyme utilisé par les Inuits du nord du Nunavik : aukkaniq</td>
<td></td>
</tr>
<tr>
<td>Iniruvik</td>
<td>Glace fissurée en raison l’action de la marée. Glace qui se fissure par les variations de la marée et qui regèle par le froid. Ce type de glace, sauf lorsque nouvellement formée, est sécuritaire pour s’y déplacer.</td>
<td></td>
</tr>
<tr>
<td>Iuusisaktuk</td>
<td>Glace solide.</td>
<td></td>
</tr>
<tr>
<td>Ivunirq</td>
<td>Glace en forme de crête soulevée par la pression des glaces environnantes en forme de crête. Eviter ce type de glace pour les déplacements. Difficilement utilisable en motoneige.</td>
<td></td>
</tr>
<tr>
<td>Kaniqtiuq</td>
<td>Fausse glace. Glace très mince. Synonyme de tuksujuq</td>
<td></td>
</tr>
<tr>
<td>Nom</td>
<td>Description</td>
<td>Description neuf</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Kaqusaruk</td>
<td>Baie d’Hudson (Umiujaq). Glace qui ne cède pas après l’avoir vérifiée en frappant avec un harpon. Antonyme de kaqusarunituk.</td>
<td></td>
</tr>
<tr>
<td>Kaqusarunituk</td>
<td>Baie d’Hudson (Umiujaq). Glace qui cède après l’avoir vérifiée en frappant avec un harpon. Antonyme de kaqusaruk.</td>
<td></td>
</tr>
<tr>
<td>Matsaq</td>
<td>Détroit Hudson (Kangiqsujuaq). Nouvelle glace formée. Synonyme de Qinuk.</td>
<td></td>
</tr>
<tr>
<td>Mutsaq</td>
<td>Baie d’Hudson (Akulivik) et détroit d’Hudson (Kangiqsujuaq). Glace de mer sur laquelle de la gadoue est accumulée.</td>
<td></td>
</tr>
<tr>
<td>Nougunaituk</td>
<td>Baie d’Hudson (Akulivik). Veille glace épaisse où le phoque ne peut plus pénétrer (abandonnée par le phoque). Ce type de glace est sécuritaire. Les gens nomment maintenant, de façon incorrecte, ce type de glace tuvak.</td>
<td></td>
</tr>
<tr>
<td>Nukatsiq</td>
<td>Baie d’Hudson (Umiujaq). Jeune glace.</td>
<td></td>
</tr>
<tr>
<td>Nungalooktook</td>
<td>Baie d’Hudson (Umiujaq). Désignant le craquement de la glace.</td>
<td></td>
</tr>
<tr>
<td>Nuniq</td>
<td>Baie d’Hudson (Umiujaq). Glace stationnaire.</td>
<td></td>
</tr>
<tr>
<td>Pilliniq</td>
<td>Détroit d’Hudson (Ivujivik). Glace fissurée par le poids d’un animal.</td>
<td></td>
</tr>
<tr>
<td>Piquniq</td>
<td>Baie d’Hudson (Akulivik). Glace suspendue causée par la pression de deux ou plusieurs glaces mobiles. Certains confondent ce type de glace avec aayaruk.</td>
<td></td>
</tr>
<tr>
<td>Nom</td>
<td>Localisation</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pirulatuk</td>
<td>Baie d’Hudson (Akulivik)</td>
<td>Eau de fonte de la glace survenant au printemps qui s’accumule à la surface de la glace.</td>
</tr>
<tr>
<td>Qanittaaq</td>
<td>Détroit Hudson (Kangiqsujuaq)</td>
<td>Neige fraîche qui vient d’être déposée au sol.</td>
</tr>
<tr>
<td>Qinuk</td>
<td>Détroit Hudson (Kangiqsujuaq) et Baie d’Hudson (Umiujaq)</td>
<td>Nouvelle glace de mer le long de la côte. Glace suffisamment épaisse pour s’y déplacer. Synonyme de matsaq.</td>
</tr>
<tr>
<td>Sikkuaq</td>
<td>Baie d’Hudson (Umiujaq)</td>
<td>Quelqu’un qui marche sur la glace.</td>
</tr>
<tr>
<td>Sikkuliaq</td>
<td>Baie d’Hudson (Umiujaq) et détroit d’Hudson (Ivujivik)</td>
<td>Nouvelle glace de mer formée pendant la nuit, lisse et fine. Environ 5-6 cm d’épaisseur. Suffisamment épaisse pour s’y déplacer.</td>
</tr>
<tr>
<td>Sikuvik</td>
<td>Détroit d’Hudson (Ivujivik)</td>
<td>Glace rugueuse formée par la migration de la glace qui se compacte. Glace qui remplace la glace lisse.</td>
</tr>
<tr>
<td>Sikulirutiit</td>
<td>Détroit d’Hudson (Ivujivik)</td>
<td>Glace lisse.</td>
</tr>
<tr>
<td>Sirumutiit</td>
<td>Détroit d’Hudson (Ivujivik)</td>
<td>Glace fissurée par la fonte de la glace.</td>
</tr>
<tr>
<td>Tasiq</td>
<td>Détroit d’Hudson (Ivujivik)</td>
<td>Glace de lac.</td>
</tr>
<tr>
<td>Tikusianituk</td>
<td>Baie d’Hudson (Akulivik)</td>
<td>Glace solide de couleur noire sans tâche.</td>
</tr>
<tr>
<td>Tukilik</td>
<td>Détroit d’Hudson (Ivujivik)</td>
<td>Glace fissurée en raison du froid intense, et non par le déplacement de la glace.</td>
</tr>
<tr>
<td>Term</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tisiatuq</td>
<td>Baie d’Hudson (Akulivik)</td>
<td>Glace fondante sous les premiers rayons soleils au printemps.</td>
</tr>
<tr>
<td>Tisasiuq</td>
<td>Baie d’Hudson (Akulivik)</td>
<td>Glace formée par une fine couche de neige déposée sur l’eau. Synonyme de pirtutak.</td>
</tr>
<tr>
<td>Tuktuyaq</td>
<td>Baie d’Hudson (Akulivik)</td>
<td>Glace qui a migré et qui s’est solidifiée après déplacement.</td>
</tr>
<tr>
<td>Tulaiyaq</td>
<td>Baie d’Hudson (Akulivik)</td>
<td>Glace lisse.</td>
</tr>
<tr>
<td>Tuvaaluk</td>
<td>Détroit d’Hudson (Ivujivik)</td>
<td></td>
</tr>
<tr>
<td>Tuvak, Tuvaak</td>
<td>Baie d’Hudson (Umiujaq) et détroit d’Hudson (Ivujivik)</td>
<td>Glace épaisse en mouvement ou stationnaire. Celle-ci peut avoir 60 cm à 200 cm d’épaisseur. Cette glace épaisse peut s’immobiliser sur la terre ou le rivage.</td>
</tr>
<tr>
<td>Tuvatsak</td>
<td>Baie d’Hudson (Ivujivik)</td>
<td></td>
</tr>
<tr>
<td>Tuviatuk</td>
<td>Détroit d’Hudson (Ivujivik)</td>
<td>Eau venant de la fonte de la glace.</td>
</tr>
<tr>
<td>Uiguaq</td>
<td>Baie d’Hudson (Umiujaq) et Détroit Hudson (Kangiqsujuaq)</td>
<td>Addition continuelle d’une nouvelle glace dans la fissure. Vieille glace de mer.</td>
</tr>
<tr>
<td>Upingasak</td>
<td>Baie d’Hudson (Umiujaq)</td>
<td>Fonte de la glace au début du printemps. Correspond à la première phase de la fonte de la glace de mer au printemps. La glace blanche adopte une couleur bleu à la suite de la fonte de la neige en surface et termine par adopter la couleur blanche pour une seconde fois. Akunaagiq correspond à la seconde phase et Upingaak à la troisième et dernière phase de la fonte de glace de mer.</td>
</tr>
</tbody>
</table>
Upingasak (Baie d’Hudson, Umiujaq).

Fonte de la glace à la fin du printemps. Correspond à la troisième et dernière phase de la fonte de la glace de mer au printemps. La glace adopte successivement la couleur blanche et noire. Tout au long cette phase, la glace n’est pas sécuritaire pour s’y déplacer. Akunaagiq et Upingasak correspondent à la première et deuxième phase de la fonte de glace de mer.
Annexe 3: Exemples de questions posées par les étudiants des écoles du Nunavik.
<table>
<thead>
<tr>
<th>Changements climatiques (générales)</th>
<th>Changements climatiques (spécifiques)</th>
<th>Questions sur les conséquences des changements climatiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Comment sait-on qu’il va y avoir un changement climatique ?</td>
<td>• A quel moment vous avez aperçu les premiers changements ?</td>
<td>• Est-ce que vous pensez qu’il n’y aura plus de glace dans le futur ?</td>
</tr>
<tr>
<td>• Quels sont les explications des changements climatiques ?</td>
<td>• Quels types de changements climatiques avez-vous observés ?</td>
<td>• S’il y a plus de glace, qu’arrivera-t-il avec les populations animales ?</td>
</tr>
<tr>
<td>• Qui devenons-nous blâmer pour ces changements climatiques ?</td>
<td>• Est-ce que notre climat est différent de celui du passé (plus chaud ou plus froid) ?</td>
<td>• Est-ce que les animaux ont des comportements différents aujourd’hui ?</td>
</tr>
<tr>
<td>• Comment arrêter les changements climatiques ?</td>
<td>• Est-ce qu’il y a plus de tempêtes que dans le passé ?</td>
<td>• Comment ces changements affecteront-ils les Inuits ?</td>
</tr>
<tr>
<td></td>
<td>• Est-ce que le réchauffement climatique se produit rapidement ?</td>
<td>• Est-ce que vous pensez que nous pourrons continuer à chasser ?</td>
</tr>
<tr>
<td></td>
<td>• Est-ce que les hivers deviendront plus courts ?</td>
<td>• Est-ce qu’il y a une différence dans le nombre d’animaux ou de poisson avec le passé ?</td>
</tr>
</tbody>
</table>

Annexe 4: Guide de bonnes pratiques en hiver
Nunavik winter safe practice guide for land and ice environments: Supporting safe travels among Nunavimmiut.

Kativik Regional Government

January 2008

Acknowledgements

This project was made possible thanks to the participation of local experts, who generously accepted to share their knowledge. We also wish to express our appreciation to the following agencies for their financial support: Northern Ecosystem Initiative, Environment Canada, Ouranos Consortium, Nasiivik Centre and the Centre d’études nordiques of Université Laval, CClAD – Natural Resources Canada, ArcticNet, Ministère des Transports du Québec and the Kativik Environmental Advisory Committee. This project could not have been possible without the contribution of the Renewable Resources and Parks Department of the Kativik Regional Government. We also want to thank all individuals who provided their comments and advice throughout the project.
Table of contents

Acknowledgements ... 1
1. Introduction ... 2
2. Before traveling ... 2
3. On the trail ... 3
4. Over lakes and rivers .. 3
5. NEVER ... 4
6. Ice security ... 4
 6.1 Freeze-up period .. 4
 a) Weather conditions ... 4
 b) Presence of currents ... 4
 c) Lake ice thickness as a regional indicator 4
 6.2 Break-up period ... 5
 a) Weather conditions ... 5
 b) Presence of currents ... 5
7. References: ... 5
Appendix 1: Winter Check List suggestion 6

1. Introduction
In Nunavik and Northern Quebec, the winter trail networks are always used by the population both to carry out traditional harvesting activities such as hunting, fishing and trapping or for recreation. To keep access to territory and resources safe, it is necessary to plan each trip. This guide provides some basics elements that can help improve your preparation for travelling. The production of this document has been possible through the participation of experienced hunters and Elders in Nunavik and Northern Quebec.

2. Before traveling
A good and safe trip begins always with good organization. Several things have to be planned before travelling. Planning will help ensure you have a safe and more comfortable trip.
 - Determine how long your trip will be.
 - Determine how many people will be going on your trip.
 - Determine where you will go and the routes that you will use. Trail networks already exist. Try to have a map with your routes and/or GPS with the waypoints of your planned route. If in doubt, do not hesitate to check with your local community experts.
 - Check the trail conditions and identify possible risky areas. Some trails may be dangerous especially at the beginning or at the end of the winter.
 - Check the locations of shelters along your route. Several shelters exist and can be used in case of an emergency. If you know where the shelters are, you will be more able to use them quickly if needed. Try to have a map with the shelter locations and/or their GPS coordinates recorded. If in doubt, do not hesitate to check with your local experts.
3. On the trail
On trail (ice or land), several things should be remembered to make sure that you travel safely.

- Exercise caution when crossing lakes and rivers. Check the ice thickness regularly in unknown areas or at more unpredictable times of the year (beginning and end of winter).
- Ride within your capabilities. Snowmobilers should travel at safe speeds, especially on unfamiliar or rugged terrain where hazards (dangerous ice or land conditions) may be encountered.
- Reduce speed in unfamiliar territory.
- Slow down at night. Your headlight limits how far ahead you can see. The slower you are traveling, the less distance you need to stop.
- Use known snowmobile trails whenever and wherever possible.
- Snowmobilers should not carry more than one passenger. Headlights and tail lights should be on at all times to improve the visibility of the snowmobile to other vehicle drivers.

4. Over lakes and rivers
River and lake ice routes are places where many snowmobile trails pass. Take all the precautions possible when traveling on ice.

- Be aware of ice conditions and, if in doubt, check with local experts or organizations (e.g., Elders, local experts, HFTA, Parks office where KRG runs a community ice monitoring program).
- The freeze-up and break-up periods could be the most dangerous. Make sure to know your environment well (point 6).
- Snowmobilers should avoid snowmobiling on ice if they are uncertain about its thickness or condition. The conditions of trails should also be checked whenever possible before traveling. Check with an Elder, active hunter in your community or the local...
KRG office if the ice monitoring program is running in your village.
- Wear flotation-type clothing.

5. NEVER
Avoid bad habits that could put you or your family and friends in danger.
- Never drive a snowmobile if you are impaired (have been drinking alcohol or taking any illicit drugs). “Don’t drink and drive” applies to snowmobiles as to any motor vehicle.
- Never ride alone.
- Never leave children unattended with “kiddie” snowmobiles.
- Never leave young children alone.
- Never travel with babies.

6. Ice security
Safe travel, either inland or on sea, depends on the awareness of ice conditions. Two critical periods to be aware of when traveling or planning to travel on sea ice are freeze-up and break-up. Traditional Inuit knowledge and skills can help you to be aware and prepared to ensure your safety. The following information comes from interviews conducted with experienced hunters and Elders of Nunavik. If you have any doubts about ice conditions and safety, do not hesitate to check with your local experts.

6.1 Freeze-up
The freeze-up period is the first critical period when you have to be aware of the ice conditions. Before travelling, make sure that the ice is safe. Weather and environmental conditions can influence ice formation and safety. If you are at all in doubt about the ice quality, do not hesitate to check with your local experts.

a) Weather conditions
During freeze-up, make sure that the ice is safe (thick and stable). The ice must be thick enough to support your machine and those of your group. A variety of weather conditions can influence the ice conditions. Some indicators can help you identify if the ice is ready or not to travel on. You should be aware of and know what the weather conditions have been like in the days just before your trip.

Have the days just before your trip been very cold? Weather conditions are important during ice formation. Ice formation at the beginning of winter season requires cold temperatures for an extended period of time. Local Northern Quebec community experts state that two to three cold days are required for safe ice formation, both in sea and freshwater environments. They say that cold and dry weather contributes to a faster freeze-up.

Has it snowed in the days or weeks just before your trip? The snow, although it is needed to travel by snowmobile, can influence ice formation. A thick layer of snow can insulate the cold and limit its penetration to the ice and slow down freezing. Also, a snow layer can camouflage or hide dangerous spots on the ice too. The negative association between snow accumulation and ice development is true in both salt water and freshwater ice.

Was it windy in the days prior to your trip? According to local community experts, freeze up is influenced, in combination with temperature and snow accumulation, by wind. Even if the temperature is below zero, strong wind can
delay freeze up. This negative effect of wind on freezing is observed in both salt water and freshwater environments.

b) Presence of currents
Presence of currents can also influence ice formation during freeze-up in both sea and fresh water environments. You must know where the main currents are. Usually, ice formation is delayed or the ice will be thinner where there are strong currents in the water. Places such as straits (between islands and the mainland) and the mouths of rivers are considered more dangerous for this reason.

e) Lake ice thickness as a regional indicator
According to local community experts, the thickness of lake ice on particular lakes in an area is a good indicator of the freeze up time of all lakes in that area. They are good indicators for the area, in this case. This information can be helpful but be certain to use a lake that is known to be a good indicator or representative of the region before trusting it as an indication of other lakes in the region. It is best to ask one of your local community experts in your town to know where the best ‘indicator lakes’ are in your region.

6.2 Break-up period
The break-up period is the second critical period you have to be aware of considering ice conditions. Before travelling, make sure that the ice is safe. The sea ice is the most dangerous and difficult to predict during break up. Warmer days and presence of currents in the water can accelerate melting. If you are at all in doubt about the ice safety, do not hesitate to check with your local experts.

a) Weather conditions
During break-up, make sure that the ice is safe. Some climate indicators (temperature, wind, etc) can help you identify good ice conditions.

Have it been very warm recently?
Ice can be frozen solid following the bitter cold temperatures of winter, but is melting with the return of the sun and the warm sun of spring. Freshwater ice can get dangerous very fast, even if the ice was very thick on that lake before. This is especially the case when the ice is very clear. In sea ice, where there are currents in the water, warmer temperatures could contribute to melting and create open water (polynya’s) even during the winter months, so be careful.

Has it snowed recently?
Snow at the beginning of spring can extend the period of time that sea and lake ice stay in the water. Snow cover can protect the ice from the warm temperatures keep the ice solid for a longer time time. However, large amounts of snow in spring could also lead to slushy conditions in that the snow begins to melt and raise the level of water under the ice.

b) Presence of currents
The presences of currents in the area you are traveling can also influence the ice contributing to faster melting. On the sea ice, you have to know where areas of strong currents are. Currents may form, during mild weather, and create areas of open water.

7. References:
Les changements climatiques au Nunavik et au Nord du Québec : L'accès au territoire et aux ressources

Appendix 1: Winter Check List suggestion
Before a trip, it is recommended to verify whether you have all necessary equipment and all is functional. To help you to prepare your trip, here is a check list of material useful for winter trips. Please note that this list is a suggestion only and should be adjusted to meet your own needs.

<table>
<thead>
<tr>
<th>WINTER CHECKLIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>axe, snow knife & sawbuck</td>
</tr>
<tr>
<td>brew kit</td>
</tr>
<tr>
<td>candles</td>
</tr>
</tbody>
</table>

Nunavik winter safe practices guide for land and ice environments: Supporting safe travel among Inuit.
Renewable Resources Department – Kuujjuaq Regional Government
January 2008
Les changements climatiques au Nunavik et au Nord du Québec : L’accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008

Nunavik winter safe practices guide for land and ice environments:
Supporting safe travels among Nunavimmiut.
Renewable Resources Department - Kuvik Regional Government
January 2006
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF radio, SAT-Phone</td>
<td>The HF Radio and SAT-Phone serve to communicate in cases of emergency.</td>
</tr>
<tr>
<td>Hot water bottles</td>
<td>Perfect for a tea break.</td>
</tr>
<tr>
<td>Kerosene</td>
<td>A key to surviving going through the harsh conditions and getting out of the water as quickly as possible.</td>
</tr>
<tr>
<td>Kettle or stove</td>
<td>Always useful.</td>
</tr>
<tr>
<td>Lantern</td>
<td>Light for the long winter nights.</td>
</tr>
<tr>
<td>Matches, lighter & magnifying lens</td>
<td>Matches are the best tool to make a fire. You can waterproof your matches by dipping them with candle wax. A magnifying lens can help you start a fire if you don't have matches. You need to use the magnifying glass to focus the sun or small branches to start the fire.</td>
</tr>
<tr>
<td>Probe</td>
<td>Useful for measuring ice and snow in rescue situations.</td>
</tr>
<tr>
<td>Sleeping gear</td>
<td>(mattress, carry-bag, sleeping bag)</td>
</tr>
<tr>
<td>Sewing kit (with needles, string, thread, & patch)</td>
<td>A good insulation from the cold and To repair your equipment</td>
</tr>
</tbody>
</table>
Les changements climatiques au Nunavik et au Nord du Québec : L'accès au territoire et aux ressources
Initiatives des écosystèmes nordiques – Environnement Canada
Rapport final, Mars 2008

<table>
<thead>
<tr>
<th>Accessoires</th>
<th>Utilité</th>
</tr>
</thead>
<tbody>
<tr>
<td>ski or snowmobile goggles</td>
<td>To protect your eyes</td>
</tr>
<tr>
<td>shovel</td>
<td>Always useful</td>
</tr>
<tr>
<td>stove (Pear or wood)</td>
<td>To heat food and beverages</td>
</tr>
<tr>
<td>snowshoes & ski</td>
<td>Always useful</td>
</tr>
<tr>
<td>sun glasses & sun block</td>
<td>To protect your eyes and skin during sunny days</td>
</tr>
<tr>
<td>tarp & rope (and extra rope)</td>
<td>Tarp can be used to build a shelter in cases of emergency. Ropes could be useful to tie your tarp and for several other uses</td>
</tr>
</tbody>
</table>

Nunavik winter safe practices guide for land and ice environments: Supporting safe travels among Nunavimmut.
Renewable Resources Department – Kuujjuaq Regional Government
January 2008
Annexe 5: Publications scientifiques

Climate Change in Northern Québec: Adaptation Strategies from Community-Based Research

MARTIN TREMBLAY², CHRISTOPHER FURGAL², CAROLINE LARRIVÉE³, TUUMASI ANNANACK⁴, PETER TOOKALOOK⁵, MARKUSI QIISIK⁶, ELI ANGIYOU⁷, NOAH SWAPPIE⁸, JEAN-PIERRE SAVARD³ and MICHAEL BARRETT⁹

² Renewable Resources Department, Kativik Regional Government, P.O. Box 9, Kuujjuaq, Québec J0M 1C0, Canada; mtremblay@krg.ca

² Departments of Indigenous Studies and Environmental and Resource Studies, Trent University, 1600 West Bank Dr., Peterborough, Ontario K9J 7B8, Canada; chrisfurgal@trentu.ca

³ Consortium Ouranos, 550 Sherbrooke Ouest, 19e étage, Montréal, Québec H3A 1B9, Canada

⁴ Renewable Resources Department, Kativik Regional Government, P.O. Box 126. Kangiqsualujjuaq, Québec J0M 1N0, Canada

⁵ Renewable Resources Department, Kativik Regional Government, P.O. Box 108, Umiujaq, Québec J0M 1Y0, Canada

⁶ Renewable Resources Department, Kativik Regional Government, P.O. Box 130, Kangiqsujuiaq, Québec J0M 1K0, Canada

⁷ Renewable Resources Department, Kativik Regional Government, P.O. Box 74, Akulivik, Québec J0M 1V0, Canada

⁸ Naskapi Nation of Kawawachikamach, Kawawachikamach, Québec G0G 2Z0, Canada

⁹ Renewable Resources Department, Kativik Regional Government, P.O. Box 9, Kuujjuaq, Québec J0M 1C0, Canada
Abstract: Arctic communities are recently reporting warmer and shorter winters, which have implications for the ice season and, consequently, on the access to local territories and resources by members of these communities. These climatic shifts are resulting in increased risks for travel during the winter season associated with less stable and thinner ice. An integrated community-based monitoring (ICBM) program was developed in Nunavik to generate adaptation tools to support safe access to land and resources and to enhance local adaptive capacity through participation in community-based monitoring activities. The Nunavik ICBM approach brings together partners (northern communities, organizations and Canadian universities) having various perspectives on the issues surrounding land and resources in Nunavik. The ICBM project also brings together traditional knowledge and scientific knowledge, linking data collected through semi-structured interviews, local ethno-cartographic interviews, ice monitoring activities and data gathered at weather stations. The partnership-based Nunavik ICBM program dealing with territory and resource access is an example of how communities and scientists can work together to further understand the issues of climate change impacts in the North, their importance for Aboriginal people and how local adaptive capacity can be developed through an integrated, cooperative research process.

Key words: adaptation, climate change, ice monitoring, integrated community-based monitoring, semi-structured interviews, Northern Québec, scientific knowledge, traditional knowledge
Résumé. Les communautés arctiques rapportent depuis quelques années des hivers plus chauds et plus courts qui ont des implications sur la saison de glace et par conséquent sur l’accès au territoire et aux ressources locales par les membres de ces communautés. Ces conditions climatiques ont comme conséquence d’augmenter les risques lors des voyages hivernaux en raison de glaces instables et plus minces. Un programme intégré de surveillance des glaces (PISG) a été développé au Nunavik pour produire des outils d'adaptation visant à soutenir l'accès sécuritaire au territoire et aux ressources et pour augmenter la capacité d’adaptation locale par la participation communautaire aux activités de surveillance. L’approche du PISG rassemble plusieurs partenaires (les communautés nordiques, organismes et universités canadiennes) qui s’intéressent particulièrement aux questions d’accès au territoire et aux ressources au Nunavik et y apportent des perspectives variées. Le projet du PISG intègre le savoir traditionnel et le savoir scientifique utilisant plusieurs sources de données (provenant des entrevues semi-structurées, des entrevues ethno-cartographiques locales, de la surveillance de glace et des données météorologiques). Le PISG est un exemple de partenariat entre les communautés nordiques et les scientifiques qui permet de mieux comprendre les impacts des changements climatiques en cours dans le nord, leur importance sur les peuples autochtones et la façon dont la capacité d’adaptation locale peut être développée par une recherche intégrée et coopérative.

Mots clés: adaptation, changement climatique, surveillance de glace, suivi communautaire intégré, entrevues semi-structurées, Québec nordique, savoir scientifique, savoir traditionnel
INTRODUCTION

Trail networks in Nunavik and Northern Québec are very important for local populations. These networks provide links between the communities because no road network exists in the region and communities are only accessible by plane or by boat. Thus, trails are used to conduct traditional activities such as hunting, fishing and trapping. Harvesting activities remain an important activity for economic, cultural and nutritional reasons (Myers et al., 2005; Van Oostdam et al., 2005). Climate change has begun to impact the timing and security of access to local environments and modify individuals’ access to key resources (Furgal et al., 2002; Lafortune et al., 2004). The changes observed in this region also constitute critical social and economic issues for Northern Quebec residents. In response to these changes, an integrated community-based monitoring (ICBM) program is being developed in the region, and is contributing to the abilities of local populations to cope with climatic change and maintain traditional harvesting activities.

The Intergovernmental Panel on Climate Change (IPCC, 2007) reported that climate change has already started to occur in the polar regions. Change is resulting in warmer temperatures, mainly in winter, the impacts of which can be seen in a decrease in the extent and thickness of sea ice, by the melting of permafrost, increased coastal erosion and by changes in the distribution and abundance of key northern species. Moreover, the IPCC (2007) projects that this region will be affected by some of the largest and most rapid changes of any region in the world, which will have important consequences for both northern environmental and human systems. Most climate models for the 21st century forecast that the Arctic will be affected by increases in precipitation and temperature, especially during autumn and winter seasons (ACIA, 2005).

In Nunavik, the 20th century was the warmest overall to date (Lavoie and Payette, 1992; Overpeck et al., 1997); however, until recently, this region did not experience the significant warming trend observed elsewhere in the North until the past 10 years. Some studies even observed a cooling trend in the region previous to this period (e.g. Allard et al., 1995). However, since the mid-1990s, Nunavik has been affected by warmer temperatures, which have already had consequences for the environment (Allard et al., 2004). Local populations also report warmer and shorter winters (Lafortune et al., 2004; Community of Kangiqsujuaq et al., 2005), which affect the ice season (i.e. delayed freeze-up, thinner ice and earlier break up) and consequently human access to local harvesting areas and resources (Lafortune et al., 2004; Tremblay et al., 2006).
Before, the snow and the land were solid enough to travel safely. Because of global warming the situation has changed. They [harvesters] have to be more careful and the routes that are taken during the winter are sometime not frozen, especially the river. – Quitsak Tarriasuk, Ivujivik

Before, we could go along the shore in front of Umiujaq all the time. Now you have to be careful. It is only during real winter that you can use that area (...). In May, the whole area is no longer passable. Back then we could have used dog teams. But now it is melting faster, the ice is going out faster. – Davidee Niviaxie, Umiujaq

These new climatic conditions also have significant consequences on individuals’ access to local territories and resources. In many cases, harvesters are delayed in the timing of their activities and have to wait for better conditions or use alternate trails in response to the new circumstances.

It is mainly on the coast that we have problems [by snowmobile] because the ice is not frozen as much today as it used to be. In the past we could travel confidently but today the sea ice is melting near the current. – Mattiusi Iyaituk, Ivujivik

The difference between my regular routes and today is because I would normally be going fishing because there is usually snow at this time of year. But now, today [3 November 2005], there still no snow. – Henry Quissa, Akulivik

Climatic changes have been well documented since the beginning of the Holocene (Alley, 2000; Korhola et al., 2002) and over the last few centuries (Overpeck et al., 1997). Several generations of arctic peoples have used various strategies to cope with changes in the past (Nelson, 1969). Their adaptative capacity is well known (Robards and Alessa, 2004). Traditional knowledge (TK) systems are critical in supporting local adaptation to climate change (e.g. Krupnik and Jolly, 2002). TK refers here to the cumulative body of knowledge, practice and belief, evolving by adaptive processes handed down through generations (Berkes, 1999). However, contemporary climatic changes seem to differ in their intensity from earlier shifts. New climate conditions, in some cases, are responsible for unprecedented environmental changes in northern regions. In the case of ice dynamics, some local ice experts have difficulties describing these new environmental conditions. Consequently, TK, at the individual scale, may not always be effective in adapting to recent contemporary climatic change.

I can not answer you on this question [Can you tell me how you know when the ice is safe to travel on?] because now the ice behaviour is different than what it is used to be. – Paulasi Qaunaaluk, Ivujivik
The project “Access to Territory and Resources” was initiated by the Kativik Regional Government (KRG), in response to concerns expressed by the communities, to improve adaptive capacity of northern communities in Nunavik with respect to climate change. This community-based monitoring project has developed an integrated approach that brings together people from northern communities, regional administrative agencies and universities in a multidisciplinary initiative involving both TK and scientific knowledge (SK). The program studies aspects of climatology, ice dynamics, human safety and food security to respond to community concerns and needs for adaptation. The principle objective of the project is to enhance local adaptive capacity to respond to climate change through participation in community-based monitoring activities. This paper describes the integrated community-based monitoring (ICBM) model used to develop adaptation tools for safe access to land and resources in Nunavik communities.

REGIONAL CONTEXT

The region of Nunavik is composed of 14 communities located along the coasts of Hudson Bay, Hudson Strait and Ungava Bay (Fig. 1). The communities are accessible only by plane or boat (in summer). Five Inuit communities (Akulivik, Ivujivik, Kangiqsualujjuaq, Kangiqsujujuq and Umiujaq) and one Naskapi community (Kawawachikamach) were selected to participate because they are representative of the different bioclimatic zones that make up the region and because each community expressed interest in participating in the study. Kawawachikamach is the only community outside of the Nunavik region involved and is located inland just south of the Nunavik border (55°N). This village is linked by road to the community of Schefferville, Quebec, which is accessible by train from the Lower North Shore of the St. Lawrence River. None of the other communities in the study is linked to the others or to the rest of the province via a road network, much like communities in other northern regions of the country (e.g. the Baffin region of Nunavut, Nunatsiavut, some regions within the Northwest Territories). Winter trail networks throughout the region, comprised of land and sea ice trails that have been used for generations, are therefore particularly significant because they connect the communities to each other and provide access to traditional harvesting grounds during winter months. Many of the land-based trails are used all year round.
FIG. 1. Nunavik showing participating communities.
PRELIMINARY STUDIES AND IDENTIFICATION OF PROJECT PRIORITIES

The first phase of the project began with community workshops in 2002–2003 that were conducted in three Nunavik communities (Community of Kangiqsujuaq et al., 2005; Community of Ivujivik et al., 2005; Community of Puvirnituq et al., 2005). These workshops brought together representatives from the communities to discuss the changes that residents had observed in their local environment and the impacts of these changes on the community and individuals’ activities. The workshops revealed that, among other things, the weather was now more unpredictable and winter temperatures were warmer than ever before. Moreover, these new winter conditions influenced ice dynamics, creating later freeze-up and earlier break-up times as well as thinner ice throughout the winter. Changes to the sea and lake ice conditions were reported to be having impacts on residents’ access to important local hunting and fishing areas and, thus, resources throughout the year.

The ICBM project was developed based on the requests made by communities to address some of the critical concerns identified during the workshops (Community of Kangiqsujuaq et al. 2005; Community of Ivujivik et al. 2005; Community of Puvirnituq et al. 2005) and has focused specifically on the issue of access to the territory and resources to respond to the communities’ adaptation needs. The project now involves several sources of data and brings together TK and SK based on quantitative and qualitative analysis of ice conditions.

COLLABORATION BETWEEN PARTNERS

The Nunavik ICBM approach brings together partners with various perspectives on the issues related to access to territory and resources in Nunavik. Community participation is the cornerstone of the project and is organized and sustained by a local researcher responsible for the development of the research directions in each community and the liaison between community members and scientists involved in the project. Ideally, the goal is for the community to take responsibility, as much as possible, for the research project to direct it in ways to best find solutions for the issues that concern local residents. In general, the cooperation follows a basic process: once issues have been identified, local authorities and scientific researchers request resources from funding agencies in cooperation with community or regional agencies; when funds have been allocated, communities are consulted and project goals and timelines are adapted; initial background and TK interviews are conducted and community-based monitoring work is
then established and directed by the local researcher in cooperation with scientific researchers playing an advisory role; upon the completion of the work, adaptation strategies are developed together with the local researcher, community members and the scientific researchers, and finally; adaptation tools are disseminated within the community by the local researcher.

Northern Authority and Scientific Researchers

The Nunavik ICBM program was developed based on the relationships between the KRG Renewable Resources Department and Parks Section and university-based scientists. The development of these partnerships constituted the first step in developing the network that supports the project today. The KRG has been responsible for project planning since its inception, and support has been provided by the scientific partners in proposal writing, fundraising, training of individuals and analysis of locally collected data. The ICBM was implemented in Nunavik communities under the direction and authority of the KRG. The local researchers in the project, based in many of the participating communities, have a strong interest in the issue of climate change and related impacts in their region and were already employees of the KRG Renewable Resources Department at the outset of the project. Their participation in the research and monitoring project was seen as a supplement to their originally scheduled work and now comprises an official component of their job description. A strong partnership was developed with scientists from the Nasivvik Centre at Laval University in Quebec City, who are dedicated to supporting community-based research initiatives through training and cooperative project development. This relationship has facilitated the conduct and analysis of local ethno-cartographic interviews with hunters and elders related to community trail networks, local ice dynamics, and changes in local and regional climate patterns. Collaboration with climate change researchers in Montreal (Ouranos Consortium) and researchers at Laval University’s Centre d’études nordiques has supported the quantitative analysis of climate indicators that complement the investigation into local changes and their impacts on human activities.

Northern Communities

The ICBM was implemented in Northern Quebec communities in the spring of 2004. The development of partnerships with communities began with meetings and presentations to the municipal councils and the local Hunting, Fishing and Trapping Associations. As the project was a requested response from the community workshops, support already existed
for the initiative within communities and the initial meetings constituted a project planning and adaptation phase. This initial step ensured that the project covered issues deemed significant at the individual community scale and that it would have relevant benefits for the local population.

Today, local involvement in the ICBM is composed of, among other things, the sharing of local observation-based data and TK. This information is gathered directly by the local researchers with the help of scientists through semi-structured interviews (as in Huntington, 1998) using an ethno-cartographic process (Chapin and Threlkeld, 2001). In each community, interviews have been conducted with 5 to 10 elders or experienced hunters (Tremblay et al., 2006). Interview participants were recruited based on the advice of the local Hunter, Fishers and Trappers Association and the large majority were males, however some women were included upon recommendation of their expertise and knowledge of ice conditions or traveling frequency. During these interviews, elders and hunters share their observations and knowledge about changes in local climate conditions, changes in ice dynamics, and the impacts of these changes on the use of traditional trails and human safety while on the land (Table 1). Traditional trail mapping interviews had been conducted by the Makivik Corporation in the region between the 1970s and 1990s and these exist as part of their TK database. One of the key contributions to the communities in this KRG project has been the identification and documentation of increasingly ‘risky areas’ in local ice or land trails because of recognized changes in climate and weather variables. However, because environmental conditions are continuing to change in this region, these trail networks and the ‘risky area’ maps must be updated regularly to preserve their accuracy and thus, utility for communities.

Participants are aware of the importance of communicating these local observations and TK for the benefit of current and future generations to promote and maintain the safe practice of traditional activities and travel on the land and sea.

It would be best if this information is handed down to the next generation and was used by people growing up. – Paulasi Qaunaaluk, Ivujivik

Other interview participants saw an opportunity to update or learn from the TK shared in the project.

I would like the knowledge to be used because I have data [experience] that was gathered 30 years ago and it will be good to update them to see if they are still true. It will be nice to see, for instance, if risky areas [that I have seen] are really still like that. It would be nice to get new data [observations] for the past 10 past years. – Henry Alayco, Akulivik
TABLE 1. Community contributions to the integrated community-based monitoring (ICBM) program.

<table>
<thead>
<tr>
<th>Description</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Several experts on ice dynamics and traditional trails from six communities (Akulivik, Ivujivik, Kangiqsualujuaq, Kangiqsujuaq, Kawawachikamach and Umiujaq) in six bio-climatic zones</td>
<td>Identification of concerns of the population</td>
</tr>
<tr>
<td>Identification of concerns of the population</td>
<td>Community project support</td>
</tr>
<tr>
<td>Community project support</td>
<td>Traditional knowledge (TK) on ice dynamics</td>
</tr>
<tr>
<td>Traditional knowledge (TK) on ice dynamics</td>
<td>Key (environmental and climate) indicators of ice safety</td>
</tr>
<tr>
<td>Key (environmental and climate) indicators of ice safety</td>
<td>Tools to evaluate ice safety</td>
</tr>
<tr>
<td>Tools to evaluate ice safety</td>
<td>TK on traditional trails</td>
</tr>
<tr>
<td>TK on traditional trails</td>
<td>TK on climate change</td>
</tr>
<tr>
<td>TK on climate change</td>
<td>Local information on trail conditions to validate the climate indicators of safe ice</td>
</tr>
</tbody>
</table>

Local participation and knowledge are critical in the development of community adaptation strategies because adaptation tools already exist in TK systems. Indeed, this type of knowledge is community-specific, place-based, related to environment-dependant practices and developed through past and current experience (Berkes et al., 2000). It represents a local database of adaptive measures to succeed in the local environment. As a result, the TK information collected from semi-structured interviews in this study is being used to develop a ‘safe practices guide’ for land and ice travel. As well, an interactive CD-ROM concerning access to local land and resources is being produced that will contain results from the study on ice dynamics as well as maps illustrating principal and alternate trails and risky areas around each participating community. Also, local participants have provided weekly qualitative information on winter trail conditions. This information is being used to identify and validate, from a local Inuit perspective, climatic indicators characterizing safe ice conditions, and it is being used in the generation of new indicators for ice modeling. These climate indicators are developed through the collection of both quantitative and qualitative information through ice monitoring activities (IMA) in sea and lake environments in collaboration with researchers at Ouranos (Tremblay et al., 2006).
Local Researchers in Northern Communities

The Nunavik ICBM is based on an ‘investigation in the North, for the North and by the North’ approach, which is essential to developing adaptive capacity at the local scale. To this end, one active and trained local researcher is present in all but one community. In this case, the researcher from Akulivik is also responsible for the research in the community of Ivujivik. Local researchers play a critical role in the investigation, and in maintaining a link between scientists supporting the project and the communities. Local researchers are in charge of data collection and are fully involved, as partners with the scientists, in the development of adaptation strategies based on analysis and interpretation of results. For example, local researchers are responsible for conducting the semi-structured interviews and collecting the quantitative data in the IMA. They are also responsible for the communication of project information to the local population. In some cases, some of the local researchers have also presented study results at scientific meetings and conferences outside of their region on behalf of the project.

The training of local researchers has been a significant stage in the development of the ICBM. Prior to each winter, local researchers participate in a team meeting where winter fieldwork is planned and organized. This seasonal meeting is an opportunity for the local researchers to review methods used during the previous year and to identify training needs related to these activities or associated with any new methods to be used in the upcoming season. At this time, training workshops or modules are identified by the research team and the local researchers receive training. Training on data entry, organization and analysis is provided on an ongoing basis. The main goal of this ongoing training is to ensure that the local researchers have the ability to become progressively more in charge of the project in their own community. Local researchers have received training in such things as the conduct and transcription of ethno-cartographic interviews (semi-structured) with experienced hunters and elders (Table 2, Fig. 2). Local researchers have also been trained in the standardized collection of ice and snow data for the IMA at critical nodes in local trail networks around their community and the conduct of short key-informant interviews with harvesters regarding winter trail conditions (Table 2). Currently, IMA weekly measurements are taken at two different sites and both snow level and ice thickness are recorded from December to May (freeze-up to break-up). The data are entered by the local researcher into a spreadsheet and sent electronically to a central researcher responsible for coordinating activities in all the communities. This central researcher then posts the weekly data on the project’s web site (http://climatechange.krg.ca) for public viewing. Thus, the community has access, via the Internet or the local researcher, to weekly updates consisting of both quantitative measurements and qualitative observations by local experts of ice conditions in key locations around their community.
FIG. 2. Ethno-cartographic map for the Kangiqsualujjuaq area. Maps of trails and routes are available for ATV, dog team, kayak, canoe, peterhead (boat), snowmobile and speedboat. Trail users can download maps from the project web site (http://climatechange.krg.ca) and print them in black and white or colour. Interactive maps allow trail users to have easy map access without needing advanced computer skills.
TABLE 2. Contributions of local researchers to the integrated community-based monitoring (ICBM) program.

<table>
<thead>
<tr>
<th>Abilities Developed among Local Researchers</th>
<th>Responsibilities of Local Researchers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can carry out interviews independently with elders and experienced hunters and translate/transcribe interviews into English</td>
<td>Interviews with elders and hunters</td>
</tr>
<tr>
<td>Responsible for collecting standardized field ice and snow data at weekly intervals</td>
<td>Interview translations and transcripts</td>
</tr>
<tr>
<td>Can enter data in electronic spreadsheet and create basic graphs illustrating changes in ice and snow characteristics over the winter</td>
<td>Mapping workshop activities</td>
</tr>
<tr>
<td>Can present project results during scientific conferences</td>
<td>Ice monitoring</td>
</tr>
<tr>
<td></td>
<td>Fieldwork data computing</td>
</tr>
<tr>
<td></td>
<td>Disseminating study results in communities</td>
</tr>
<tr>
<td></td>
<td>Scientific conference presentations</td>
</tr>
</tbody>
</table>

BENEFITS FOR NORTHERN PEOPLE AND THE SCIENTIFIC COMMUNITY

The Nunavik ICBM program has developed through strong community participation and it strives to benefit local people by supporting their adaptations to changes in the local environment. In particular, the project contributes to increasing the community’s capacity to collect, understand, deliver and use local information related to climate and environmental change. The TK, local observations and IMA information gathered in this project are made available to the local populations as soon as possible after their collection and organization. The project uses the Internet to maintain and provide updated information to interested individuals. This mode of dissemination has become significantly more effective and acceptable in the region since the implementation of region-wide broadband access. One of the objectives of disseminating this information is to try to inform both active and future harvesters. This medium makes it possible to disseminate IMA information and details regarding trail conditions in real time. Throughout the ice season, it is possible to consult the weekly ice data for strategic locations along the winter trail networks and obtain information reported by local ice experts about the general conditions of the trail (e.g. “the ice is formed but you have to be careful because of the presence of open water near …”, “the ice is safe to go anywhere along the trail”, “the fast ice is still solid, but be careful near …”). Through the Internet it is also possible to disseminate material such as updated regional trail/route maps showing trails used for snowmobile, dog team, ATV, kayak, peterhead (boat), speedboat and
canoe travel for each community (Fig. 2). The maps are available in PDF format, easy to download and print, thus making them more ‘user friendly’ for local residents. Also, it is possible to adjust the documents and communication tools on a periodic basis to better respond to the needs of the population in response to feedback heard through the local researcher on the applicability and use of the information generated on the site. For example, users have commented on the scale, symbols and time to download maps available on the project website, and this information has been used by the research team to improve these products. The web site also provides access to information on weather conditions, weekly tide charts and marine weather forecasts through links with agencies such as Environment Canada and others. At a time when communities are becoming increasingly modern and a larger percentage of individuals are engaged in wage-earning employment during the week, yet still hunting and traveling outside of work hours and on weekends, such forms of communications support (e.g. use of regional Internet sites) for the exchange and distribution of information in the community appear to be increasingly valuable.

The Nunavik ICBM has also used standard and accepted methods of data collection and analysis to ensure scientific quality. For example, interviews with elders and hunters on ice dynamics and climate change, IMA and weather analysis all follow accepted scientific methods. Qualitative thematic content analysis (Creswell, 2003) of the interviews (TK on regional trails and ice dynamics) has used the standard method of Tesch (1990). The IMA respects a strict protocol and the methods used are identical for all participating communities. Recently secured funding (ArcticNet) and collaboration with networks of scientists (University of Manitoba and Laval University) have allowed the acquisition of automated ice monitoring stations to further improve the quality of the local weather monitoring data. These stations could aid, for example, in the identification of variables other than temperature (e.g. wind, humidity, solar radiation, etc.) that have an impact on local sea ice dynamics but about which we currently have little understanding at the local scale.

CONCLUSION

The Nunavik ICBM project promotes the development of adaptive capacity based on the participation of local populations in all aspects of the research process. This project takes a multidisciplinary approach, integrates several sources of data and brings together TK and SK based on quantitative and qualitative analyses in the natural and social sciences. Knowledge on climate and environmental change, ice dynamics and local land and ice trail use facilitates the identification of current and potential future problems and the development of adaptation tools to support ‘safe’ access to territory and resources in Nunavik. The inclusion of both TK and SK has been essential in helping understand
climatic and environmental changes in a way that respects both Aboriginal perspectives and scientific views. As a result, the project is producing credible and relevant information to support adaptation to climate change by northern communities. Moreover, the multilevel partnership strategies developed in this project can be applied to other environmental issues to incorporate local involvement and expertise and the benefits that come with this inclusion, meanwhile ensuring the scientific integrity of the project.

ACKNOWLEDGEMENTS

This project would not be possible without the ongoing support and participation of local experts who generously agreed to share their knowledge. We are also grateful to the following agencies for their financial support: Northern Ecosystem Initiative – Environment Canada, Climate Change Impacts and Adaptation Directorate – Natural Resources Canada, Ouranos Consortium, ArcticNet, Nasivvik Centre at Laval University, Ministère des Transports du Québec, and Kativik Environmental Advisory Committee. The project would not have been possible without the in-kind contribution of the Renewable Resources Department and the Parks Section of the KRG. We also thank Dr Dave Rosenberg, two anonymous reviewers and all the individuals who provided comments and advice on project reports and other communication products.

REFERENCES

ALLARD, M., FORTIER, R., GAGNON, O., and MICHAUD, Y. 2004. Problématique du développement du village de Salluit, Nunavik. Salluit: Une communauté en croissance sur un terrain sensible au changement climatique. Québec City: Centre d’études nordiques, Université Laval. 93 p. Available at Centre d’études nordiques, Université Laval, Québec City, Québec G1K 7P4, Canada.
ALLARD, M., WANG, B., and PILON, J.A. 1995. Recent cooling along the southern shore of Hudson Strait, Quebec, Canada, documented from permafrost temperature measurements. Arctic and Alpine Research 27(2):157–166.

Communities and Ice:
Bringing Together Traditional and Scientific Knowledge

Martin Tremblay, Christopher Furgal, Violaine Lafortune, Caroline Larrivée, Jean-Pierre Savard, Michael Barrett, Tiumasi Annanack, Noat Enish, Peter Tookalook and Betsy Etidloie

Abstract
Traditional and scientific knowledge are used together to find solutions to adapt to climate variability in Northern Quebec communities within the framework of the project titled "Climate change in Nunavik: Access to territory and resources". This research project is based on interviews with elders and experienced hunters, ice and snow monitoring by local Inuit and Naskapi researchers and supporting analysis of local climate data. Through the combination of this information, the project is beginning to identify the most appropriate indicators to characterize ice conditions and determine when the ice trails - critical for accessing harvesting areas and maintaining a more traditional way of life - are safe for travel by the local populations.

Introduction
While climate warming has already come to affect several regions of the planet, including the Arctic (Anisimov et al. 2001) and northern Quebec, Canada was until recently influenced by a cooling trend (Allard et al. 1995). Only during the last ten years has this northern region been experiencing the warming reported in other regions of the circumpolar North (Figure 1).

Future climate change in the Arctic is difficult to predict but several sources and models agree that it will become, on average, a warmer and wetter region (Anisimov et al. 2001, Kattsov & Kallen, 2005). Such changes are of great interest to scientists working in these regions and of great concern to residents living in northern communities. In addition to representing significant impacts to ecosystems via shifts in fire system dynamics, increased risk of insect outbreaks, introduction of new animal and plant species and changing permafrost dynamics (Cohen et al. 2001), climate change in the Arctic may impact the way subsistence-based northern communities access their land and resources (Furgal et al. 2002, Figure 2). For example, these new conditions may reduce by several weeks the period when it is safe to use ice trails, both inland and in coastal marine areas. These trails are in fact critical for hunting and traveling outside the local communities and can only be used during the cold season. This situation has already been experienced to some extent by northern communities in the Northwest Territories, Nunavut and Alaska (Fox 2002, Kofinas et al. 2002, Nickels et al. 2002, Norton 2002). Also, there have been some recent reports of climate change impacts on access to territory in Nunavik and Labrador, where unpredictable weather patterns and ice instability were shown to negatively affect traveling conditions (Furgal et al. 2002, Furgal & Communities of Labrador 2003, Furgal & Communities of Nunavik 2003, Lafortune et al. 2004).

These changes threaten to reduce contact between communities, decrease access to quality of traditional food resources, indirectly contribute
Figure 2 : Winter trails in Nunavik (Credit: J. Drouin).

to a deterioration of the cultural and social fabric in communities, prevent the generation and transfer of traditional knowledge and reduce the level of physical activity associated with land based activities during winter months. All of these changes have potential impacts on the health and well-being of northern peoples. Both traditional knowledge and local observations as well as scientific knowledge, can be useful in understanding how changes, such as alterations in the safety of ice conditions, affect individuals’ access to land and resources and can be used to develop strategies to cope and ultimately adapt to environmental change. Traditional knowledge refers here to the "...cumulative body of knowledge, practice and belief, evolving by adaptive processes handed down through generations by the cultural transmission" (Berkes 1999). Although Inuit have always adapted to change and such capacity has historically been an integral part of the social organization of northern peoples (Nelson 1969), fast, dramatic and unexpected climate change could make current efforts for adaptation much more difficult. Moreover, northern communities and peoples have changed significantly since coming into permanent settlements and experiencing various forms of social, cultural, political and economic change. The development of tools which support adaptation to environmental change could help to protect and preserve aspects of a more traditional lifestyle, increasing population resilience to climate change in the future (Chapin et al. 2004).
community tools for coping and adaptation. The four participating communities (Umiujaq, Kangiqsujuaq, Kangiqsualujjuaq and Kawawachikamach) were selected to participate in the project to represent different bioclimatic areas of Northern Quebec. This project is the first of its kind in the region and since its inception, has garnered great support and interest among the participating communities and regional organizations. The project is one of the rare projects where the autochthonous populations are entirely involved. The objectives of the project were defined with the communities. The data are collected (interviews and measurement of ice) by a local researcher in each community.

Table 1: Community characteristics

<table>
<thead>
<tr>
<th>Communities</th>
<th>Establishment, Biome, & Population (Statistics Canada, 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kangiqsujuaq</td>
<td>1910, trading post established with continuous occupation since then (Corporation 2004). Located far above the treeline in the tundra. 535 inhabitants</td>
</tr>
<tr>
<td>Umiujaq</td>
<td>1985-86, village established by some Inuit from Kuujjuaraapik to preserve traditional lifestyles (Corporation 2004). Located where the tundra and the forest-tundra meet. 350 inhabitants.</td>
</tr>
<tr>
<td>Kangiqsualujjuaq</td>
<td>1962, Inuit established the first co-operative of Northern Quebec with continuous occupation since then. Located south of treeline in the forest-tundra, (Makivik Corporation, 2004). 710 inhabitants</td>
</tr>
<tr>
<td>Kawawachikamach</td>
<td>1915, Naskapis moved from Fort Chimo (now Kuujjuaq) to Fort McKenzie, back to Fort Chimo in 1948, and to Schefferville in 1956 (Naskapi Nation of Kawawachikamach, 2004). In 1980 the Naskapis voted for the relocation to the present site. Fort McKenzie area is still considered traditional hunting grounds by the Naskapi Elders. Located inland in the forest-tundra. 540 inhabitants</td>
</tr>
</tbody>
</table>
community tools for coping and adaptation. The four participating communities (Umiujaq, Kangiqsujuaq, Kangiqsualujuaq and Kawawachikamach) were selected to participate in the project to represent different bioclimatic areas of Northern Quebec. This project is the first of its kind in the region and since its inception, has garnered great support and interest among the participating communities and regional organizations. The project is one of the rare projects where the autochthon populations are entirely involved. The objectives of the project were defined with the communities. The data are collected (interviews and measurement of ice) by a local researcher in each community.

Table 1: Community characteristics

<table>
<thead>
<tr>
<th>Communities</th>
<th>Establishment, Biome, & Population (Statistics Canada, 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kangiqsujuaq</td>
<td>1910, trading post established with continuous occupation since then (Corporation 2004). Located far above the treeline in the tundra. 535 inhabitants</td>
</tr>
<tr>
<td>Umiujaq</td>
<td>1985-86, village established by some Inuit from Kuujjuaarpik to preserve traditional lifestyles (Corporation 2004). Located where the tundra and the forest-tundra meet. 350 inhabitants.</td>
</tr>
<tr>
<td>Kangiqsualujuaq</td>
<td>1962, Inuit established the first co-operative of Northern Quebec with continuous occupation since then. Located south of treeline in the forest-tundra, (Makivik Corporation, 2004). 710 inhabitants</td>
</tr>
<tr>
<td>Kawawachikamach</td>
<td>1915, Naskapis moved from Fort Chimo (now Kuujjuaq) to Fort McKenzie, back to Fort Chimo in 1948, and to Schefferville in 1956 (Naskapi Nation of Kawawachikamach, 2004). In 1980 the Naskapis voted for the relocation to the present site. Fort McKenzie area is still considered traditional hunting grounds by the Naskapi Elders. Located inland in the forest-tundra. 540 inhabitants</td>
</tr>
</tbody>
</table>
Interviews with Local Experts

The preliminary stages of the project involved bringing together researchers on climate change science, human geography and impact assessment with local researchers from the participating northern communities. At this time, key project objectives most important to both the scientific and local communities were identified. The team then developed interview grids and other data collection tools (e.g. ice and snow monitoring protocols) and the researchers provided training to the local researchers on interview methods, data recording, and analysis. The intent of training within the project was so that local researchers would progressively take direction of the project in their own community; this has been the experience to date. Participatory research methods have been employed throughout the project.

The project has been conducted in several stages and is still ongoing. Initially, during the winter of 2003-04, semi-structured interviews by local researchers with Elders and locally recognized expert harvesters were conducted to document current use of trail networks in the vicinity of each participating community. A cartographic semi-directed interview process was developed with local researchers to first identify trails surrounding the community, specify their current use as well as the typical mode of transportation used on them by participants. Interview questions also included the identification of any observed changes in the use of each trail in the last 20-30 years (Table 2). The second phase of data collection (winter of 2004-05) involved conducting semi-structured in-depth interviews with Elders and experienced hunters in each community to document knowledge on the processes of ice formation and melting around each community and to identify qualitative cues used by local experts to determine when the ice is safe for travel (Table 3). Over the course of the same period (winter 2004-05), an ice monitoring pilot project was initiated in each of the participating communities to collect both qualitative and quantitative data on changes in ice conditions at locations along key trails. This information is being used with meteorological data to identify key indicators (qualitative and quantitative) of ice conditions at the community level.
Table 2: Interview guide for cartographic interviews on use and changes in the trail network in Northern Quebec.

Questions

- We are going to talk about all the routes in the area that you use. Can you please mark the routes / trails that you use on the map? Starting with the snowmobile, go through each other form of transportation and give the participant the colour marker for that form of transportation.
 - Snowmobile → Blue
 - ATV → Orange
 - Kayak → Green (Inuit)
 - Canoe → Red
 - Peterhead → Brown
 - Dogteam → Purple
 - Truck → Green (Naskapis)
 - Walking → Black
 - Speedboat → Red
 - Trap line → Pink

 While the person is marking the trails on the map, please ask what the trail / route was used for and mark this at the end of the trail with the right code (create new code when needed):
 - Caribou → C
 - Fish → F
 - Black Bear → BB
 - Canada Goose → G
 - Beluga → B
 - Mussels → M
 - Snow Geese → GE
 - Walrus → W
 - Polar Bear → PB
 - Beaver → Be
 - Seal → S
 - Muskrats → M
 - Fox → FX
 - Ptarmigan → P
 - Berries → BE
 - Wooding → WD

- Please identify on the map which routes you use most often during a single year (Interviewer: please highlight these with a yellow pen and if it seems to cover more than one type of trail, ask interviewee if this is for snowmobile, honda, etc.)

- Has these routes always been the ones you use most often each year?

- Are there any important areas you can no longer get to or that you can’t get to when you normally could before? *Probe: Why is this area difficult to get to or no longer accessible?*

- Are any of the traditional routes abandoned (not used any more)? (Interviewer: please have the participant draw them on the map and put some x’s along the line). *Probe: When was it abandoned? Probe: Why is it no longer used? Probe: What was it used for before?*
Qualitative content analysis (Creswell 2003) of the interviews was conducted whereby common groups or categories of information were developed iteratively for responses to each question among all participants, as described by Tesch (1990). The groups or categories were then re-examined or subdivided in smaller categories if needed. Community researchers and other team members were involved in this process conducting some components of the analysis individually to control for inter-coder variability. A validation phase with the participants was included and maps are now being validated in all communities. An analytical table organizing information from all interviews for each stage was produced as a result of the coding exercise. The coded and summarized interview data was transcribed into the analytical table and reviewed by team members.

Traditional and Scientific Knowledge: Current Trail Use and New Hazards

During the first phase of the project, the interviews conducted with expert hunters and Elders focused on the identification of the network of trails used throughout the year (Table 2) while specifying which type of transportation was used for each one of the trails as well as the usual use of the route (e.g. snowmobile trail to go fishing in Bay X; Table 2). Areas and trails representing increasing risks to humans (based on descriptions provided by the participants) were identified. This information allowed for the production of preliminary trail maps with potentially risky areas for each community. The maps revealed that, although climate change seems to have had little impact so far on the trail network around the Naskapi village of Kawawachikamach, increased travel risks linked to ice instability and weather unpredictability have already become important issues for the communities of Umiujaq, Kangiqsujuaq and Kangiqsualujujuaq. Most climate related hazards associated with trail use were located on ice trails near these coastal communities and were identified as being more “risky”, particularly during the freeze-up and break-up of river, lake and sea ice (Lafortune et al. 2004). Specific sectors of trails were identified as key locations in terms of new or increasingly risky areas for travelers’ safety at these periods of time (e.g. see Figure 4).
Table 3: Ice knowledge interviews

Introduction to participants: Last winter, we visited your community to discuss changes people were noticing in the use of trails around the community. We learned that there are areas that are getting more dangerous at certain times of the year out on the ice at river mouths and in shallow coastal areas. Starting this year we would like to start an ice-monitoring program with you in your community. We are talking with people like yourself, who know a lot about the ice, the land and the routes in the area to get a better understanding of the ice dynamics (how it is changing, when is it safe to travel on, things like that) for the lakes and sea ice areas. Sharing your knowledge about ice with us will also guide the work of the local researcher who will make weekly measurements of ice conditions in specific locations. We will be preparing maps to show where there are dangerous areas appearing each year and fact sheets on this issue for KRG and the communities. By the end of March, these will be translated and brought back to the community through the local researchers and we will make sure that you and other people you think should know about this information will be provided a copy. We are doing these interviews in Kangiqsujuaq, Uninijaq, Kangiqsujujuajuaq and Kawawachikamach over the next month. The discussion should take about 1-2 hours.

Please have them review and sign the consent form before starting. Use your risk assessment map as an example.

First ask these questions for sea ice, then repeat the process for lake ice.
- Can you tell me how you know when the ice is safe to travel on?
- Can you describe to me how ice usually forms?
- When does the ice usually form and become safe to travel on?
- What are the best weather conditions to form solid ice that is safe to travel on?
- What are the factors that slow down ice becoming solid?
- We are trying to educate scientists and people now from the community knowledge about ice and the different "types" of Ice you can have. Can you tell me what are the different types of ice? Can you tell me the Inuktut names for the different kinds? Can you describe each of these types of ice to me? Can you tell me under which conditions each type of ice exists?
Understanding Ice from the Community Perspective
During the second phase of the project, interviews were led by local researchers with Elders and expert hunters known to have a rich knowledge of ice conditions in their local area. The results of these interviews served to document ice dynamics as viewed from a community perspective (Table 3). The interview questions related to the characteristics of sea and fresh water ice during the various stages of the winter season. Traditional knowledge and local observations revealed that ice formation is taking place later in Northern Quebec than ever before, as reported by the interview participants. This observation is shared among experts from Kangiqsujuaq, Kangiqsualujuaq and Umiujaq. To know at which time the ice becomes safe to travel on, community experts reported that physical observations of both ice and weather conditions are required. Several days with low temperatures allow the thickening of both sea and lake ice. On the other hand, the presence of wind or snow can delay ice formation. In addition to confirming that lake and sea ice break-up is also influenced by climatic and environmental conditions (such as high temperatures, increased solar radiation, snow accumulation, degree of salinity and presence of currents), the community experts provided information on the different phases the ice undergoes before it becomes safe/unsafe to travel (Figure 5). The information is important for the scientific community as it not only confirms the best climatic indicators related to ice freeze up and break up processes but also provides some perspective as to how the hunters analyze environmental conditions and sets the ground for monitoring and other research initiatives within the community.
Figure 5: Ice and snow monitoring in relation with expert information, Umiujaq (2004-2005). Expert information allowed for the defining of ice as dangerous, safe with dangerous spots or safe. The ensemble of information presented here is being used to develop indicators of ice safety.

Monitoring Ice: Information from Scientists and Local Experts
As a result of identifying some areas that were becoming increasingly risky or dangerous for travel around communities during the first stage of the project, the need was identified for a focused study or ice monitoring program. The strategy for local ice monitoring in the communities, an activity that will continue until the end of the research project, was based on the collection of two types of data. First, in each community short interviews were conducted weekly with a small number (two or three per community) of experts frequently traveling in the area. These interviews aimed to gather local qualitative descriptions of current ice trail conditions, focusing mainly on but not limited to, two specific areas (one freshwater ice, brackish water ice and/or one sea ice location) along key trails used by community residents. Each area was chosen by the community researchers. The sites selected are important nodes in the trail networks to access harvesting grounds at particular times of the year (e.g. a crossroads of many trails in a local Bay, very important for accessing an important hunting location in the winter). The second set of data collected included a series of field measurements at these sites including snow depth and
ice thickness. This data was also collected on a weekly basis. At each location, an ice hole was dug and snow and ice depth were measured. The timing and characteristics of freeze-up and break-up were reported in all cases.

Instrumental data are used to determine quantitative indicators of safe ice. Through the analysis of qualitative interview data from local experts, the project is trying to determine the most appropriate quantitative indicators, or suite of indicators, that are representative of the cues used by local experts to characterize the ice and determine “safe” ice conditions as well as critical determinants of ice formation and break-up. In reviewing both qualitative and quantitative data together, the research team is identifying quantitative indicators to add to the suite of regular instrument measurements taken at specific sites each week and to determine more feasible ways to gather this data through the local monitoring process. This aspect of the work constitutes indicator development in some cases for local ice monitoring. Instrumental data (daily temperature, precipitation, and wind) from Environment Canada (past 50 years; 3 stations throughout the region) and the Centre d'études nordiques meteorological stations (past 15 years, but with many stations closer to many communities) were used to test the relationship between meteorological indicators and ice variables.

![Graph showing the relationship between ice thickness and Freeze Degree-Days Sum (FDDS)](image)

Figure 6: Relationship between ice formation and Freeze Degrees Day Sum (FDDS) for Guillaume Delisle Lake, Nunavik.
The preliminary results show a strong relationship between ice development and the Freeze degree-days sum (FDDS) (Figure 6). The analysis of this data could prove to be effective in developing an indicator for the time at which the ice becomes safe in specific locations. For example, the ice on Guillaume Delisle Lake was considered safe by community experts as of January 17, 2005 (Figure 5). At this time, the ice at the measurement location had a thickness between 52.5 cm (measured on January 8) and 77.5 cm (measured on January 19) and that area had experienced a total FDDS of 1250 days. The relationship between the minimum thickness of ice considered safe (in a standard location) and FDDS from the moment when the minimal thickness is reached will make it possible to establish a critical point of FDDS at which the ice can be considered safe for travel. This information is important in a climate-warming context. However, other measurements of ice must be carried out to validate the reliability of this threshold. Moreover, other data must be included in the establishment of this threshold, as the presence of currents and the salinity of water have not yet been included in the analysis and are identified by community experts as critical variables in this equation. Similarly, the role that snow plays on ice formation will have to be better documented in coming years. Moreover, increased efforts will also be required to collect data regarding the sea ice melting period to increase data coverage of this time of the year.

Additionally, the information collected each week during the winter season, both quantitative measurements and qualitative descriptions, is posted on the Kivalliq Regional Government website (http://climatechange.krg.ca/) for the public to view. This website is one of the tools being developed under this project for community dissemination of this information and to support communities in adapting, in this case via sharing of up to date information related to changing environmental conditions, to climate and environmental change taking place in this region. The website is an addition to the already existing communication network of CB radios and local FM and contributes to linking scientific and traditional knowledge under this project. Future use of this website in school classrooms is being investigated.

Conclusion

Northern Quebec has been warming since 1993 (Allard et al. 2002). Climate models predict warmer and wetter conditions and more numerous extreme events in the future in many Arctic regions (Anisimov et al. 2001). Some environmental changes have already been observed and experienced by northern community residents and some of these changes may have implications on the lifestyles and livelihoods of people living in this region. In particular, climate warming may impact access to territory and resources by northern Aboriginal peoples. To help support and enhance local community capacity and resilience to respond to various forms of environmental change, traditional and scientific knowledge on this subject must be accessed. Workshops held with
community members, interviews conducted with experienced hunters and Elders, ice and snow monitoring activities carried out by local researchers and data analysis performed in cooperation with outside researchers can help to understand the situation and develop tools to support communities in coping with the negative effects of climate change in the North. Through the use of both qualitative and quantitative data, and the involvement of local knowledge and expertise, the most appropriate and relevant indicators for monitoring activities can be determined. Such monitoring can, as in this project, work towards providing practical information on such things as “safe” ice conditions as well as the critical determinants of ice formation and break-up which are of interest to both scientific and northern communities alike.

Acknowledgements
This project could not have been undertaken without the participation of local experts who generously agreed to share their knowledge. We are therefore greatly indebted to Tommy Einish, Susie Morgan, Davidee Nivixie, Donald Peastitude, Joshua Sala, Naalak Nappanuk and Yaaka Yaaka. We are also grateful to the following agencies for their financial support: Northern Ecosystem Initiative – Environment Canada, Climate Change Impacts and Adaptation Directorate – Natural Resources Canada, Ouranos Consortium, ArcticNet, Nasivvik Centre at Université Laval, Ministère des transports du Québec, and the Kativik Environmental Advisory Committee. The project would not have been possible without the in-kind contribution of the Renewable Resources Department and the Parks section, Kativik Regional Government. We would also like to thank all the individuals that provided comments and advice thus far in the project.
References

1 Martin Tremblay works with the Kativik Regional Government, Kuujjuaq (QC) and the Nasiivik Centre for Inuit Health and Changing Environments. Public Health Research Unit. Christopher Furgal also works at the Nasiivik Centre for Inuit Health and Changing Environments. Violaune Lafortune, Caroline Larivére, Michael Barrett, Tun纳斯 Anuauq, Noat Etnish, Peter Tookalook, and Betsy Etioloe all work for the Kativik Regional Government, Kuujjuaq (QC). Jean-Pierre Savard works at the Ouranos Consortium, Montreal.