Outils d’analyses hydrologique, économique et spatiale des services écologiques procurés par les milieux humides des basses terres du Saint-Laurent : adaptations aux changements climatiques

Rapport final

Richard Fournier, UdeS
Monique Poulin, ULaval
Jean-Pierre Revéret, UQAM
Alain Rousseau, INRS-ETE
Jérôme Théau : UdeS

Octobre 2013

Les résultats et opinions présentés dans cette publication sont entièrement la responsabilité des auteurs et n’engagent pas Ouranos ni ses membres.
Contributeurs au projet et au rapport :

Volet écologique
- Laurie Bisson-Gauthier, ULaval
- Marcel Darveau, Canards Illimités du Canada

Volet hydrologique
- Maxime Fossey, INRS
- Stéphane Savary, INRS

Volet économique
- Jie He, UdS
- Fanny Moffette, UdS
- Jérôme Dupras, UdM

Volet géomatique
- Mathieu Varin, UdS
- Roxanne Lanoix, UdS

Rapport colligé par :

Roxanne Lanoix
Département de Géomatique appliquée, UdS
Table des matières

1. Contexte/Problématique/Objectif .. 8
2. Cadre théorique / compte rendu de la revue de littérature .. 10
 2.1. Revue de la cartographie des milieux humides ... 10
 2.1.1. Définition MH .. 10
 2.1.2. Système de classification des MH basé sur la structure 10
 2.1.3. Système de classification des MH basé sur la fonction 10
 2.1.4. Système de classification des MH basé sur l’utilité .. 11
2.2. BSÉ et fonctions écologiques .. 11
2.3. Structure et composition des marécages ... 13
2.4. Modélisation hydrologique ... 15
2.5. Évaluation économique des services écologiques des MH 15
 2.5.1. Méta-analyse .. 16
 2.5.2. Méthodes basées sur préférences déclarées .. 16
3. Méthodologie / données .. 18
 3.1 Sites d'étude .. 18
 3.2 Préparation de la base de données .. 22
 3.2.1. Cartographie du territoire .. 22
 3.2.2. Unité hydrologique relativement homogène (UHRH) ... 27
 3.2.3. Unités spatiales .. 27
 3.3 Caractérisation végétale .. 28
3.4. Modélisation hydrologique ... 29
 3.4.1. Préparation des données à l’aide du SIG PHYSITEL .. 29
 3.4.2. Intégration des BV au modèle hydrologique HYDROTEL 31
 3.4.3. Calage et validation du modèle hydrologique HYDROTEL 34
 3.4.4. Méthodes d’analyses ... 35
 3.4.5. Le contexte de changement climatique .. 37
 3.4.6. Les scénarios d’occupation des sols ... 38
3.5. Évaluation économique des services écologiques des MH 39
 3.5.1. Méta-analyse .. 39
 3.5.2. Étude contingente ... 44
3.6. Cartographie des biens et services écologiques à l’aide d’indicateurs spatiaux 45
 3.6.1. Mise en place d’indicateurs spatiaux .. 45
 3.6.2. Outil d’aide à la décision pour la gestion des milieux humides 48
4. Résultats .. 50
 4.1. Caractérisation des marécages .. 50
 4.2. Modélisation hydrologique .. 55
 4.2.1. Intégration des BV au SIG PHYSITEL ... 55
 4.2.2. Intégration des BV au modèle hydrologique HYDROTEL 58
 4.2.3. Évaluation du rôle hydrologique des MH en conditions actuelles 60
 4.2.4. Évolution de l’impact des MH en condition de CC .. 62
 4.2.5. Évaluation des scénarios d’occupation des sols en condition de CC 63
 4.3. Analyses sur l’évaluation des bénéfices des BSÉ rendus par les MH 65
 4.3.1. Transfert de bénéfices à l’aide de la méta-analyse .. 65
 4.3.2. Méthodes basées sur préférences déclarées ... 1
 4.4. Outil d’aide à la décision pour la gestion des milieux humides 1
 4.4.1. Fonction du support d’habitats fauniques .. 1
 4.4.2. Fonctions de régulation des débits de crues .. 8
 4.4.3. Fonction de rétention des sédiments ... 14
5. Analyse et discussion .. 19
 5.1. Quels sont les défis de la caractérisation des marécages ? 19
 5.2. Comment la modélisation hydrologique permet de mieux comprendre le rôle des MH 20
 5.3. Comment la démarche de l’évaluation économique peut servir à mieux estimer les 22
 biens et services écologiques procurés par les MH ...
 5.4. L’analyse spatiale permet-elle un diagnostic précis et facilite-t-elle l’intervention, la 23
 conservation et l’adaptation aux CC ? .. 23
 5.5. Perspectives d’une approche élargie pour mieux comprendre le rôle des MH et leur 24
 apport pour l’adaptation aux CC ? ...
6. Conclusion et recommandations ... 26
7. Références ... 28
Annexe 1 : Système de classification .. 34
Annexe 2 : Description des indicateurs ... 36
Annexe 3: Tableau des groupes de variables explicatives de la végétation des marécages .. 38
Annexe 4 : Tableau des espèces végétales et de leurs valeurs Indval 1 et 2 (p=0,001 pour 39
 toutes les espèces) ..
Listes des figures

Figure 1: Carte du bassin versant de la rivière Yamaska ...20
Figure 2: Carte du bassin versant de la rivière Bécancour ...21
Figure 3: Cartographie 2011 du BV de la rivière Yamaska ...25
Figure 4: Cartographie 2011 du BV de la rivière Bécancour ...26
Figure 5: Schéma illustrant le HEW et le découpage de l’UHRH en versant ..31
Figure 6: Cartographie des indicateurs d’une fonction écologique des MH ...46
Figure 7: Répartition des marécages riverains et isolés selon une analyse canonique de redondance de leurs communautés végétales ...50
Figure 8: Influence des variables environnementales sur la végétation des marécages selon une analyse canonique de redondance ...51
Figure 9: Partitionnement de la variation pour expliquer la végétation des marécages51
Figure 10: Recouvrement moyen par classe pour chaque strate végétale dans les marécages isolés et riverains ...52
Figure 11: Richesse et diversité végétale moyenne dans les marécages isolés et riverains...........52
Figure 12: Fréquence (barre d’histogramme) et couvert (point) des espèces indicatrices (IndVal) pour chaque type de marécage ...54
Figure 13: Carte des MH et de leurs aires drainées sur le BV Bécancour .. 55
Figure 14: Carte des MH et de leurs aires drainées sur le BV Yamaska .. 56
Figure 15: Courbes de fréquences cumulées des débits simulés (AMH et SMH) à l’exutoire de la Bécancour pour l’ensemble des années hydrologiques (1961-2010) en conditions : (a) de crue, (b), normales et (c) d’étiage ...60
Figure 16: Impact relatif respectif des MH isolés et riverains sur les phénomènes de crues et d’étiages sur le groupe amont (TR 255) du bassin de la Bécancour (01 octobre 1970 – 30 septembre 2010) ...61
Figure 17: Impact relatif respectif des MH isolés et riverains sur les phénomènes de crues et d’étiages sur le groupe amont (TR 240) du bassin de la Yamaska (01 octobre 1970 – 30 septembre 2010) ...61
Figure 18: Impact relatif des MH en condition de CC, sur la Bécancour, pour les périodes de référence (H1), actuelle (H2) et future (H3) ...62
Figure 19: Impact relatif des MH en condition de CC, sur la Yamaska, pour les périodes de référence (H1), actuelle (H2) et future (H3) ...63
Figure 20: Effets des changements d’occupation des sols et variations moyennes des indicateurs hydrologiques calculés sur le bassin de la Bécancour pour l’horizon H3 (2051-2099) en comparaison à la situation de 2011 ...64
Figure 21: Effets des changements d’occupation des sols et variations moyennes des indicateurs hydrologiques calculés sur le bassin de la Yamaska pour l’horizon H3 (2051-2099) en comparaison à la situation de 2011 ...64
Figure 22: Valeurs à l’hectare et caractéristiques des MH dans les sous-bassins versants de la rivière Yamaska (parcelles de 50 km²) ...70
Figure 23 : Valeur à l'hectare et caractéristiques des MH dans les sous-bassins de la rivière Bécancour (parcelle de 50 km²) ... 71
Figure 24 : Valeurs totales et caractéristiques des milieux humides dans les sous-bassins versants de la rivière Yamaska (parcellas de 50 km²) ... 72
Figure 25 : Valeurs totales et caractéristiques des milieux humides dans les sous-bassins versants de la rivière Bécancour (parcellas de 50 km²) ... 73
Figure 26 : Indicateurs de la fonction sur le support d'habitats du BV de la rivière Yamaska en 2011, au niveau des sous-bassins ... 2
Figure 27 : Indicateur de fonction (IF) de support de l'habitat représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011 3
Figure 28 : Indicateur de fonction du support de l'habitat des quatre périodes temporelles, représenté au niveau des sous-bassins ... 4
Figure 29 : Fiche synthèse de trois cas du bassin versant de la rivière Yamaska 5
Figure 30 : Analyse temporelle d'un microbassin d'un cas de sous-bassin de la rivière Yamaska .. 6
Figure 31 : Indicateur de fonction (IF) de support de l'habitat représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011 7
Figure 32 : Indicateur de fonction du support de l'habitat des quatre périodes temporelles, représenté au niveau des sous-bassins de la rivière Bécancour 8
Figure 33 : Indicateurs de la fonction de régulation des débits de crues du bassin versant de la rivière Yamaska en 2011, au niveau des sous-bassins ... 9
Figure 34 : Indicateur de fonction (IF) de la régulation des débits de crues représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011 10
Figure 35 : Indicateur de fonction de la régulation des débits de crues des quatre périodes temporelles, représenté au niveau des sous-bassins ... 11
Figure 36 : Indicateur de fonction (IF) de la régulation des débits de crues représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011 12
Figure 37 : Indicateur de fonction de la régulation des débits de crues des quatre périodes temporelles, représenté au niveau des sous-bassins du bassin versant de la rivière Bécancour ... 13
Figure 38 : Indicateurs de la fonction de la rétention des sédiments du bassin versant de la rivière Yamaska en 2011, au niveau des sous-bassins ... 14
Figure 39 : Indicateur de fonction (IF) de la rétention des sédiments représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011 15
Figure 40 : Indicateur de fonction (IF) de la rétention des sédiments des quatre périodes temporelles, représenté au niveau des sous-bassins ... 16
Figure 41 : Indicateur de fonction (IF) de la rétention des sédiments représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011 17
Figure 42 : Indicateur de fonction de la rétention des sédiments des quatre périodes temporelles, représenté au niveau des sous-bassins du bassin versant de la rivière Bécancour ... 18
Liste des tableaux

Tableau 1 : Caractéristiques des bassins versants des rivières Yamaska et Bécancour en 2011 ... 18
Tableau 2 : Diversité des MH des bassins versants des rivières Yamaska et Bécancour en 2011 ... 18
Tableau 3 : Système de classification utilisée pour l’élaboration des cartes de l’occupation du territoire ... 22
Tableau 4 : Occupation du territoire historique, actuelle et future des BV des rivières Yamaska et Bécancour ... 24
Tableau 5 : Processus simulés et algorithmes disponibles pour les simulations hydrologiques ... 32
Tableau 6 : Seuils de fréquence de non-dépassement associés aux conditions hydrologiques ... 36
Tableau 7 : Description des scénarios climatiques du MRCC ... 37
Tableau 8 : Descriptif des variables explicatives ... 42
Tableau 9 : Résultats du modèle économétrique de méta-régression ... 43
Tableau 10 : Exemples d’indicateurs du développement durable pour les trois fonctions écologiques des MH (les indicateurs en gras ont été retenus pour l’analyse) ... 47
Tableau 11 : Couverture et aires drainées par les MH isolés et riverains sur les BV 57
Tableau 12 : Stations hydrométriques associées aux simulations hydrologiques sur les BV Bécancour et Yamaska ... 58
Tableau 13 : Performance du modèle HYDROTEL pour l’ensemble des tronçons des deux BV pour les périodes de calage et de validation ... 59
Tableau 14 : Comparaison des valeurs/ha/an en fonction des données moyennes de la méta-analyse, du BV de la Yamaska et du BV de la Bécancour ... 67
Tableau 15 : Comparaison de différents cas dans le bassin versant de la Yamaska, à l’aide de la moyenne du stock et des données de 2011 ... 68
Tableau 16 : Statistiques descriptives et valeurs économiques calculées à partir des sous-bassins versants ... 68
Tableau 17 : Comparaison des valeurs entre les périodes temporelles et 2011 des indicateurs de fonction de la fonction d’habitats ... 6
Glossaire

ACP Analyse de variance par composantes principales
AS Analyse de sensibilité
BSÉ Biens et services écologiques
BTSL Basses-terres du Saint-Laurent
BV Bassin versant ou Bassins versants
CEHQ Centre d’expertise hydrique du Québec
CIC Canards Illimités Canada
CC Changement climatique
CM Cartographie minimale
CCMAC Centre Canadien de la Modélisation et de l’Analyse Climatique
CRRNT Commission régionale sur les ressources naturelles et le territoire (CRRNT)
DD Développement durable
GIEC Groupe d’experts Intergouvernemental sur l’Évolution du Climat
GTNTH Groupe de travail national sur les terres humides
HGM Hydrogramme géomorphologique spécifique
IH Indicateur hydrologique
IF Indice de fonction
IndVal *Species Indicator Values*
IS Indice de sensibilité
MB Microbassin ou microbassins
MCG Modèle climatique global
MCGC3 Troisième génération du modèle couplé climatique global
MDDEFP Ministère du développement durable, de l’Environnement, Faune et des Parcs
MH Milieu humide ou milieux humides
MHE Milieux humides équivalents
MNA Modèle numérique d’altitude
MRCC Modèle régional canadien du climat
OBV Organisme de bassin versant
Op Scénario optimiste
Pe Scénario pessimiste
PIB Produit intérieur brut
RDA Analyse canonique de redondance
SB Sous-bassin versant ou sous-bassins versants
SIG Système d'information géographique
SQ Scénario statu quo
TA Scénario tendance actuelle
UCM Unité cartographique minimale
UHRH Unités hydrologique relativement homogène
USGS United States Geological Survey
VAP Volonté à payer
1. Contexte/Problématique/Objectif

Les basses-terres du Saint-Laurent (BTSL) sont caractérisées par la plus forte densité démographique du Québec (Canada) dont les activités telles que l'agriculture et l'urbanisation viennent perturber de nombreux écosystèmes. Parmi ceux-ci, les milieux humides (MH) sont les plus fortement touchés. Les pressions pour la disparition des MH sont plus importantes près des grands centres urbains, axes routiers et en bordure des zones agricoles (Jean et Létourneau, 2011). Depuis les 40 dernières années, les BTSL auraient perdu plus de 45 % de leurs MH et 65 % des milieux restants seraient perturbés par les activités anthropiques (Joly et al., 2008). Les MH constituent des habitats riches et diversifiés et accueillent ainsi un grand nombre d'espèces floristiques et fauniques. De plus, les MH fournissent une multitude de services écologiques, bénéfiques aux populations humaines et à leur qualité de vie : épuration de l'eau, régulation des débits des cours d'eau, prévention des inondations, contrôle de l'érosion, stabilisation du littoral et des rives, stockage du carbone (Joly et al., 2008). La réduction du nombre de MH mène à la dégradation des fonctions écologiques telle que la biodiversité, et mène aussi à un manque de résilience face aux impacts négatifs causés par les changements climatiques (CC) (Wang et al., 2008b). Dans un contexte de CC, le rôle des MH pourrait devenir encore plus critique, notamment en ce qui concerne les fonctions hydrologiques telles que la rétention et la répartition des eaux de surface qui assurent le contrôle des crues et des sécheresses dans les cours d'eau. La perte de milieux humides pourrait aussi affecter le régime des tempêtes et inondations en rendant celles-ci plus fréquentes et plus intenses en régions tempérées (Brinson et Malvárez, 2002).

Il devient indispensable de rétablir et de conserver certains MH afin de réduire l'impact des changements environnementaux. L'objectif du projet consiste à développer des outils d'analyses spatiale et économique pour évaluer les services produits par les MH et quantifier leur rôle dans l'adaptation aux changements climatiques. Les objectifs spécifiques ont été définis selon quatre volets: écologique, hydrologique, économique et géomatique.

Volet écologique
- Caractériser les communautés végétales et leur structure dans des marécages de types riverains et isolés des cours d'eau et cerner l'importance des paramètres de l'environnement sur l'établissement de la végétation dans ces milieux. Les marécages sont priorisés puisqu'ils sont abondants dans les deux bassins versants sélectionnés alors que leur végétation reste peu étudiée.

Volet hydrologique
- Déterminer les aires de drainage des milieux humides avec PHYSITEL
- Implanter des algorithmes propres à certains types de milieux humides (MH isolés, MH riverains) dans HYDROTEL
- Faire des simulations avec différents scénarios d'abondance et de distribution des milieux humides dans un bassin versant
- Examiner les services des milieux humides dans un contexte de changements climatiques simulé par le Modèle régional canadien du climat (MRCC)
Volet économique
- Évaluer la valeur des trois BSE des MH (support d'habitats fauniques, régulation des débits de crues et rétention des sédiments) dans l'optique de pouvoir établir une référence des bénéfices écologiques par la méthode de transfert de bénéfices (métanalyses) et la méthode d'évaluation basée sur la préférence déclarée, plus précisément, la méthode d'Évaluation contingente et celle des Choix Multi-attributs (étude de terrain)

Volet géomatique
- Établir une stratégie cartographique adaptée aux MH du Québec,
- Développer des indicateurs écologiques spatiaux en lien avec les biens et services écologiques (BSÉ),
- Élaborer un outil quantitatif d'aide à la décision pour permettre de mieux prioriser et faciliter les interventions appliquées au MH.

Pour répondre à ces objectifs, ce rapport sera divisé en six sections. La deuxième section fait une revue des méthodes utilisées permettant de contextualiser le cadre théorique du projet. La troisième section dresse le portrait des sites d'études, de la préparation des données et de la méthodologie employée pour chacun des volets à l'étude. La quatrième section présente les résultats d'analyses sur la composition et la structure de végétation selon leur lien avec les cours d'eau, le fonctionnement d'une nouvelle option qui tienne compte des MH dans le système de modélisation hydrologique, en climat actuel et en climat futur, l'évaluation des bénéfices des BSÉ rendus par les MH, ainsi qu'un prototype d'outil d'aide à la décision portant sur les interventions en matière d'adaptation aux CC à l'aide des MH. La cinquième section présente l'interprétation des résultats permettant de mieux cibler la caractérisation des marécages, de mieux comprendre le rôle des MH par la modélisation hydrologique, d'estimer les BSE procurés par les MH par une évaluation économique, de proposer un outil d'aide à la décision par une analyse spatiale pour permettre de mieux prioriser et faciliter les interventions appliquées au MH et d'établir des perspectives d'une approche élargie pour mieux comprendre le rôle des MH et leur apport pour l'adaptation au CC. La sixième section procurera les recommandations et une conclusion du travail réalisé.
2. Cadre théorique / compte rendu de la revue de littérature

2.1. Revue de la cartographie des milieux humides

2.1.1. Définition MH

Il n’existe pas de définition internationalement reconnue et acceptée pour décrire les MH. Néanmoins, dans le cadre du projet, ils sont décrits à partir de différentes définitions tirées de plusieurs auteurs (GTNTH, 1997; Krohne, 2001; Brinson et Malvárez, 2002; Wang et al., 2008b; EPA, 2011; Ramsar, 2011). Les MH sont des zones en transition entre les milieux terrestres et aquatiques qui possèdent leurs propres caractéristiques. Ce sont des régions où le niveau de l'eau est sous, au-dessus ou égal à la surface de la terre assez longtemps pour avoir un sol humide, une végétation semi-aquatique et une activité biologique adaptée à l’environnement humide, ce qui exclut les organismes non tolérants aux inondations ou à la saturation du sol. La faune et la flore se sont donc adaptées à ces milieux inondés de façon permanente ou temporaire. Aussi, afin que le milieu conserve son humidité, les précipitations et les apports d'eau doivent, en général, excéder l’évaporation. Le climat joue donc un rôle très important et ses fluctuations perturbent le fonctionnement des MH. Au-delà de sa définition, un MH peut être classifié selon plusieurs de ses caractéristiques.

2.1.2. Système de classification des MH basé sur la structure

Les critères utilisés pour définir les classes de MH dans un système basé sur la structure sont généralement les caractéristiques visibles des MH, comme la végétation. La forme du terrain est un autre critère utilisé fréquemment dans les systèmes de classification basés sur la structure. Ainsi, il est généralement possible de classer un MH en observant ses caractéristiques sans posséder de connaissances approfondies sur les MH. Les systèmes de classification basés sur la structure sont, pour le moment, les plus nombreux et les plus utilisés. Puisqu’ils s’appuient sur les caractéristiques physiques apparentes des MH pour les classifier, ils sont plus faciles d’utilisation pour les inventaires et la cartographie des MH. Ils permettent ainsi d’obtenir de l’information importante pour le suivi des ressources naturelles, soit la quantité de chaque type de MH et leur répartition sur le territoire (Brinson, 2011). Le Système canadien de classification des terres humides est basé sur la structure et propose plusieurs niveaux hiérarchiques. Le niveau le plus grossier sépare les MH en cinq classes (les eaux peu profondes, les marais, les marécages, les fens et les bogs) selon l’origine du milieu et les propriétés qui en découlent.

2.1.3. Système de classification des MH basé sur la fonction

En complément des systèmes de classification basés sur la structure, ceux s’appuyant sur les fonctions des MH ont été développés pour diminuer la dépendance aux facteurs biologiques et pour permettre le suivi des changements dans les fonctions écologiques des MH. La
gestion par les fonctions est généralement idéale pour appuyer la prise de décision en ce qui concerne la gestion du territoire. Ce type de système de classification utilise des critères liés à l’hydrologie et des critères externes, dont le climat, pour définir les différentes classes (Brinson, 2011). Contrairement aux systèmes de classification basés sur la structure qui nécessitent uniquement de l’information sur le site lui-même, ceux basés sur les fonctions des MH considèrent les facteurs externes qui ont une influence sur le milieu. Des indicateurs sont généralement utilisés pour identifier les fonctions écologiques d’un MH. Ces derniers peuvent être obtenus directement sur le terrain ou par l’intermédiaire de différents types de données, tels que des cartes ou des données sur la qualité de l’eau. L’approche de cartographie par fonction pour les MH est peu utilisée puisqu’elle demande de nouveaux développements méthodologiques afin d’établir ses lignes directrices. Les travaux dans le cadre du présent projet ont permis de développer une procédure pour produire des cartes de fonctions écologiques des MH.

2.1.4. Système de classification des MH basé sur l’utilité

Le système de classification des MH selon l’utilité considère les BSÉ que rendent les MH à la société pour définir les différentes classes. Brinson (2011) propose également une ébauche de système de classification qui tient compte uniquement des services d’approvisionnement et de régulation. À ce jour, aucun système de classification basé sur les BSÉ n’a encore été développé complètement. Un nouveau défi s’impose de développer des couches cartographiques basées sur les fonctions et les services écologiques des milieux humides qui seront compatibles avec les produits cartographiques existants plus généraux qui ne se concentrent pas uniquement sur les MH.

2.2. BSÉ et fonctions écologiques

Les BSÉ sont souvent associés aux bénéfices procurés aux humains (Costanza et al., 1997). Ils représentent l’ensemble des fonctions écologiques qui leur sont utiles et plusieurs d’entre eux sont critiques à leur survie (Kremen, 2005). Les fonctions écologiques sont le résultat des interactions entre les caractéristiques, la structure et les processus des MH (Turner et al., 2000; De Groot et al., 2007; Ramsar, 2011). Ils représentent donc la capacité des processus et des composantes écosystémiques de fournir des BSÉ pour satisfaire, directement ou indirectement, les besoins des êtres humains. On peut dénombrer quatre grandes catégories de fonctions, soit les fonctions d’information, de régulation, d’habitat et de production (De Groot et al., 2002). Une liste exhaustive représentant les principales fonctions selon leur importance dans la littérature est visible dans l’annexe 2 du livrable 4BC.

Une sélection de ces fonctions est effectuée pour le présent projet en considérant plusieurs critères. On peut dénombrer quatre grandes catégories de fonctions (De Groot et al., 2002), les fonctions d’information, de régulation, d’habitat et de production. Les fonctions de régulation (1) sont la capacité de l’écosystème à réguler les processus écologiques essentiels qui permettent de supporter la vie. Les fonctions d’habitat (2) sont relatives aux écosystèmes qui procurent des refuges et des habitats et qui contribuent à conserver la diversité biologique et génétique et les processus évolutionnaires. Les fonctions de production (3) représentent la photosynthèse utile aux producteurs secondaires créant la biomasse. Les fonctions d’information (4) regroupent tout ce qui contribue à la santé humaine. Les catégories 1 et 2 sont essentielles à l’accessibilité de 3 et 4. Dans notre étude, seulement les catégories 1 et 2 sont intéressantes. Une liste représentant les principales fonctions a été réalisée selon celles
qui reviennent le plus souvent dans la littérature en tenant compte de leur importance (voir annexe 2 du rapport « Livrable 4BC »). Ensuite, le choix des fonctions écologiques pour le projet s’est effectué en prenant en compte plusieurs critères. Un premier tri a été fait en conservant les fonctions écologiques ayant une bonne valeur d’importance associée à leur BSÉ correspondant. Par la suite, le deuxième tri a pu être réalisé. En général, les fonctions sélectionnées devaient être associées à plusieurs classes de MH présents dans les bassins versants (BV) à l’étude en plus de pouvoir être représentées par des données accessibles.

Ainsi, trois fonctions écologiques ont été choisies pour une analyse spatiale exhaustive ainsi que l’évaluation économique, soit la fonction du support d’habitats fauniques, la fonction de la régulation des débits de crues et la fonction de la rétention des sédiments. Premièrement, un milieu en santé procure une capacité de support aux plantes et des organismes présents afin de maintenir son régime hydrique et sa biodiversité (Adamus et al., 1991; Chipps et al., 2006). Deuxièmement, le contrôle des inondations (régulation des débits) est une des fonctions les plus importantes qui a de grands effets sur l’amplitude de l’inondation en aval (Duang, 1990; Haggar, 2001; Joly et al., 2008), ce qui permet d’avoir une certaine maîtrise des eaux de crues (Ramsar, 2011). Troisièmement, la rétention des sédiments est aussi une fonction importante car elle agit souvent de concert avec la rétention des polluants (toxiques) (Evans et al., 1996; Ramsar, 2011) en plus d’être liée au contrôle de l’érosion. Ces trois fonctions sont aussi utilisées dans l’étude de Cedfeldt et al. (2000) et de Mitra et al. (2005) précisent qu’elles sont parmi les plus importantes pour les MH. Une analyse plus détaillée des BSÉ et des fonctions écologiques est présente dans le rapport sur un outil d’aide à la décision pour la gestion des milieux humides : cartographie des biens et services écologiques à l’aide d’indicateurs spatiaux (livrable 4BC).

Support d’habitats fauniques
La biodiversité est la source de nombreuses sous-fonctions (Brinson, 1993). Par exemple, on dénote le maintien du réseau trophique (Brinson, 1993) et le support d’habitats fauniques et de refuges (Haggar, 2001). Il est important de noter qu’il n’y a pas de classes de MH particulières qui sont considérées comme ayant une plus grande valeur qu’une autre (Kotze et al., 2008). La fonction inclut les facteurs biologiques, physiques et chimiques qui supportent la diversité d’organismes aquatiques, terrestres et aviaires.

Régulation des débits de crues
Cette fonction consiste au stockage des eaux et à l’atténuation des débits par la désynchronisation. Les MH retiennent une partie de l’eau inondée lors des crues dans leur sol en réduisant ainsi le débit et le volume de ruissellement dans les cours d’eau (Ramsar, 2011). Par la suite, la structure végétale ralentit la circulation de l’eau en augmentant la résistance ce qui permet aux sédiments de décanter (Mitsch and Gosselink, 2000; Krohne, 2001; Hopfensperger et al., 2006). L’efficacité de la fonction dépend aussi de l’élévation relative au cours d’eau adjacent, au relief microtopographique, à la pente, à la densité végétale, à la taille du BV et aux coefficients de ruissellement (Smith et al., 1995).

Rétention des sédiments
Cette fonction agit souvent de concert avec la rétention des polluants et des toxiques (Ramsar, 2011). En effet, plusieurs contaminants chimiques et métaux sont absorbés par les matières en suspension (Adamus et al., 1991). Les MH servent de bassins où ces sédiments peuvent s’y déposer, ce qui permet de conserver la qualité des écosystèmes en aval puisque
les sédiments sont retenus en amont. La quantité de sédiments dans les cours d'eau peut être inférieure à 90 % dans les bassins fluviatiles lorsqu'ils sont composés à 40 % de lacs et de MH de plus que dans les bassins sans ces habitats (Duang, 1990). Plus l'eau chargée en sédiments reste dans le MH, moins il y a de particules qui atteignent les cours d'eau (Evans et al., 1996), car celles-ci sont captées par la végétation. En effet, les arbustes et les arbres ralentissent l'eau et captent les sédiments.

2.3. Structure et composition des marécages

Un marécage se définit comme étant une terre humide dominée par les arbres ou les grands arbustes et influencée par l'eau souterraine minérotrophe, sur des sols minéraux ou organiques (Warner et Rubec, 1997). Plus précisément, la strate arborescente ou arbustive de ces milieux couvre au moins 25 % de la superficie et fait généralement plus d'un mètre de hauteur (Warner et Rubec, 1997). Dans ce milieu, la nappe phréatique se trouve en superficie et inonde le terrain selon le cycle des périodes de crues (Zoltai et Vitt, 1995). De façon générale, la nappe d'eau d'un marécage ne dépasse pas deux mètres au-dessus du niveau du sol (Warner et Rubec, 1997). En période d'été, celle-ci s'abaisse et peut se situer jusqu'à environ 50 cm sous la surface du sol (Buteau et al., 1994). Dans certains marécages, on retrouve une accumulation de tourbe d'origine ligneuse très décomposée, c'est-à-dire qu'on lui attribue une cote plus grande que cinq sur l'Échelle de Von Post (Warner et Rubec, 1997). L'état de cette tourbe est dû aux fluctuations de la nappe d'eau qui permettent la dégradation de la matière organique par les bactéries lors du retour de l'oxygène dans le sol (Mitsch et Gosselink, 1986). L'épaisseur de la couche de tourbe varie en fonction des sites et peut égaler 50 cm (Buteau et al., 1994), voire même atteindre 1 m (Warner et Rubec, 1997). Cette quantité de tourbe est comparable à celle que l'on retrouve dans les tourbières ombrothrophes et minérothrophes. Par contre, contrairement à la tourbe arborée des marécages, celle des «bogs» se compose principalement de sphaignes, d'éricacées et de linaigrette et celle des «fens» se constitue plutôt de mousses brunes et de carex (Warner et Rubec, 1997).

Les systèmes riverains englobent toute terre humide et eau profonde comprises dans le canal d’un cours d’eau (Cowardin et al., 1979) ainsi que les plaines inondables bordant ce dernier (Brooks et al., 2011). Cette définition se s'appuie sur le fait qu’un cours d’eau et sa plaine d’inondation sont fonctionnellement reliés par l’hydrologie (Friedman et Auble, 2000) et l’apport de nutriments (Brinson, 1993). L’hydropériode des milieux riverains est régie par l’eau souterraine (Mitsch et Gosselink, 1986) ainsi que par l’apport en eau de surface provenant directement du cours d’eau adjacent et suivant la fréquence des inondations (Middleton, 2002). Selon Naiman et al. (2005), la fréquence des inondations varie d’un type de cours d’eau à un autre. Par exemple, le régime de précipitations aura un effet plus grand sur de petites rivières que sur des grosses, causant un nombre plus fréquent de débordement vers l’écosystème riverain (Naiman et al., 2005). Ces conditions hydrologiques particulières, résultant d’un apport en eau de surface distinguent les systèmes riverains des systèmes isolés, soit non-riverains. Les systèmes isolés (ou palustres selon Cowardin, 1979) se distinguent par leur absence de connectivité à un plan d’eau et ne subissent donc pas l’effet de leurs périodes de débordement. Ces milieux sont plutôt sous l’influence des fluctuations de la nappe phréatique, comme dans le cas des marécages de dépression (Yetter, 2004). On regroupe les milieux isolés en trois catégories de système: de terrain plat, de pente et de dépression (Brooks et al., 2011; Teixeira et al., 2011). Ces trois types de milieux se forment dans des systèmes de précipitations et d'écoulement, c'est-à-dire que leur nappe d'eau est
respectivement alimentée par l’eau de la pluie ou par l’eau riche en nutriments et minéraux qui ruisselle dans le sol (Buteau et al., 1994).

Selon le système de classification des terres humides du Canada (Warner et Rubec, 1997), les marécages se regroupent en trois groupes physionomiques : arbustif (taillis), coniférien et feuillu. Les marécages mixtes, incluant des essences de conifères et de feuillus, sont également présents. Les marécages sont les milieux humides les plus structurés de façon verticale. La végétation s’y organise en trois strates principales : arborescente, arbustive et non ligneuse. Cette dernière inclut les herbacées, les bryophytes et les lichens (Zoltai et Vitt, 1995). D’une part, la végétation des strates végétales plus basses reflète les conditions du sol et de l’hydrologie qui prévalent à court terme dans le milieu. Ceci s’explique par l’ensemble des perturbations qui prédomine au sol lors des inondations, affectant ainsi l’établissement de la végétation. D’autre part, la strate arborescente traduit plutôt les fluctuations qui s’y produisent à long terme (Naiman et al., 2005).

La structure et la composition de la végétation dans les marécages sont gouvernées par un ensemble de facteurs abiotiques. En effet, les différentes conditions qui prévalent dans les marécages riverains et ceux isolés du réseau hydrographique engendrent de la variabilité dans la distribution et la diversité des communautés végétales. Entre la magnitude, la fréquence, le moment ainsi que la durée des inondations, ce dernier paramètre est celui ayant le plus d’impact sur la végétation. Un sol inondé en permanence diminue la richesse en espèces d’un milieu humide (Amigo et al., 2004), puisqu’un retrait de l’eau est nécessaire pour la germination des graines et ce, même pour les espèces tolérant des périodes prolongées d’anoxie (Rheinhardt et Herschner, 1992; Casanova et Brock, 2000). Les trouées dans la canopée forestière et la microtopographie créent de l’hétérogénéité dans le milieu, ce qui favorise la régénération, mais leur rôle dans le contrôle de la structure et composition reste moins important que celui du drainage (Canham, 1989; Rheinhardt, 1992; Gavin et Peart, 1997). Dans les marécages riverains, les inondations sont des perturbations favorisant le recrutement d’espèces pionnières, généralement des herbacées. De même, les inondations constituent un vecteur important pour l’arrivée de graines à partir de sites localisés plus en amont de la bassin versant. Les marécages riverains bénéficient ainsi d’une dynamique d’immigration de graines plus importante que les marécages isolés (Naiman et al., 2005; Mata et al., 2011). Plusieurs adaptations physiologiques des plantes leurs permettent de perdurer dans les marécages soumis à des inondations plus longues et fréquentes. On y trouve ainsi des espèces ayant une hypertrophie des lenticelles sur le tronc apportant une grande quantité d’oxygène dans les tissus, d’autres possédant des racines concentrées en aérenchyme, certaines ayant un élargissement de la base du tronc pour une plus grande stabilité ou un réseau de racines adventives au-dessus du niveau d’eau moyen. Les inondations influencent également l’apport en nutriments, notamment dans les paysages agricoles où la pollution diffuse est importante. Peu d’études ont comparé directement la structure et composition végétale des marécages riverains et isolés. Dans les marécages du golfe du Mexique, la végétation des marécages de plaine inondables abrite des espèces moins tolérantes aux inondations prolongées, contrairement à celles trouvées dans les marécages de dépression. Les premiers sont également plus diversifiés dû à un apport accru de graines par les inondations et présentes une diversité bêta plus importante dans la région, donc une composition végétale plus variable d’un site à l’autre. Une étude comparative des marécages riverains et isolés sous nos latitudes contribuerait à améliorer nos connaissances de la dynamique végétale dans ces milieux et leur rôle fonctionnel au sein des bassins versants.
2.4. Modélisation hydrologique

Le contexte actuel de CC, soutenu par le Groupe d'experts Intergouvernemental sur l’Évolution du Climat (GIEC) à travers les prévisions annoncées de l’intensification des extrêmes climatiques (GIEC, 2007), a renforcé significativement le besoin d’en quantifier les risques et d’analyser les options d’adaptation. L’accent mis sur les BSÉ rendus par les MH et notamment sur leur capacité à mitiguer les effets attendus des CC (MEA, 2005) a contribué au développement d’outils permettant l’évaluation tant quantitative que qualitative du rôle de ces milieux. Parmi ces outils, la modélisation du comportement hydrologique des BV est incontournable dès lors que l’on s’intéresse à des domaines relatifs à la gestion de la ressource en eau, à l’aménagement du territoire, ou plus généralement à l’une des composantes du risque hydrologique. Elle doit permettre de répondre au mieux aux interrogations concernant la dynamique des écoulements et notamment décrire les processus liés à la formation des crues et à l’apparition des étiages.

Applicable à petite échelle, les instrumentations de sites deviennent vite coûteuses et fastidieuses à l’échelle du BV et la modélisation devient alors une alternative indispensable (Wang et al., 2010). Le développement successif des modèles hydrologiques les a rendu efficaces pour notamment examiner les conditions hydrologiques qui régissent les MH et évaluer les conséquences des changements d’occupation des sols (Nie et al., 2011) ou encore des CC (Grillakis et al., 2011). Leur adaptation par l’intégration de nouveaux concepts propres aux MH, tels que celui de « Milieux Humides Équivalents - MHE » développé par Wang et al. (2008a), leur permet d’évaluer le rôle particulier de ces milieux dans le comportement hydrologique à l’échelle du BV.

Le modèle hydrologique semi-distribué HYDROTEL (Fortin et al., 2001) a été développé dans le but de prévoir le comportement hydrologique de BV de tailles très diverses. De plus, considérant que les processus hydrologiques varient dans le temps et dans l’espace en fonction des variations des conditions climatiques et de l’occupation du territoire, ce modèle a été développé dans un souci de compatibilité avec les informations disponibles en télédétection et en Système d’Information Géographique (SIG). Ainsi, PHYSITEL, un SIG dédié à la formation de la base de données nécessaire au modèle hydrologique HYDROTEL a été développé dans le même temps.

Dans cet objectif de modélisation hydrologique, la classification selon l’approche fonctionnelle (ou approche hydro-géomorphologique) reposant sur des paramètres géomorphologiques et sur des critères de végétation, et intégrant préférentiellement les conditions hydrologiques (source des entrées d’eau et régime hydrologique) s’est imposée comme approche de référence (Brinson, 2009; Brinson et Rheinhardt, 1996) pour les évaluations de projet de gestion des MH (Gwin et al., 1999). L’ensemble des MH ont ainsi été discriminé selon notamment les sources hydrologiques d’alimentation et leur connexion au réseau hydrologique (Brooks et al., 2011) selon les systèmes riverains ou ripariens ainsi que les systèmes non riverains ou isolés définis à la section 2.3.

2.5. Évaluation économique des services écologiques des MH

De nombreuses études ont été réalisées sur la valeur des milieux humides à travers le monde (Brouwer et al., 1999; Ghermandi et al., 2010). Aucune de ces études ne comporte cependant un volet enquête ménages pour le Québec. À partir de ce constat, une méta-analyse sur la
valeur des milieux humides a été réalisée afin d'extrapoler (méthode de transfert des avantages) une valeur aux milieux humides du Québec et en particulier des milieux humides des basses terres du Saint-Laurent. En second lieu, une enquête auprès de la population adulte du Québec sera construite dans le but d'évaluer directement la valeur qu'ils accordent aux services écologiques rendus par les milieux humides. La méthodologie retenue dans cette seconde étape est celle des préférences déclarées en utilisant l'évaluation contingente et les choix expérimentaux (méthode multi-attributs).

2.5.1 Métanalysé

La méthode du transfert de bénéfices est souvent privilégiée lorsque les ressources sont limitées. Comme elle n'exige pas d'étude sur le terrain, cette méthode nécessite moins de ressources financières et humaines en plus de prendre moins de temps. Cela permet aussi d'avoir un premier aperçu des composantes de la valeur et de mieux cadrer et orienter une étude primaire subséquente. Il existe plusieurs variantes de la méthode du transfert de bénéfices, mais la métanalyse est celle qui est la plus précise et la plus stable.

Tel qu'expliqué par Boyer (2013), la métanalyse est une méthode économétrique qui consiste à inférer, de multiples analyses similaires utilisant des sites et valorisations similaires, un bénéfice qui est transférable d'une ressource environnementale ou service écosystémique à un autre site similaire. Elle utilise une mét-régression dans laquelle la variable dépendante est souvent la valeur de la volonté à payer (VAP) pour un changement spécifique de la ressource obtenue/estimée des multiples études sélectionnées. Cette mét-régression nous permet d'expliquer comment ces VAP des autres études peuvent être expliquées par des variables indépendantes concernant les caractéristiques des sites sélectionnés, les populations concernées par les sites, les méthodes d'estimation de VAP, etc. L'avantage le plus évident d'une telle approche par rapport à la méthode de transfert de fonction est que la métanalyse, en se basant sur de multiples études similaires et sur des analyses statistiques, interprète avec précaution une relation de moyenne statistique entre la VAP et ses facteurs déterminants, pouvant ainsi réduire les biais potentiels existant dans le choix du site étudié. Ainsi, plus grand est le nombre d'études similaires utilisées dans l'estimation de la relation entre la VAP et ses facteurs déterminants, plus petite est l'erreur due au transfert à cause de la loi des grands nombres (Wilson et Hoehn, 2006).

Toutefois, la métanalyse demande de trouver et de compiler un grand nombre d'études primaires de qualité. Cela pose certains défis, car les informations désirées sont souvent manquantes dans ces études, puisqu'elles n'ont pas été conçues pour le transfert de bénéfices. La métanalyse demande donc un niveau plus élevé de ressources et d'expertise que les autres variantes de transfert de bénéfices. Elle permet néanmoins une meilleure flexibilité ainsi qu'une comparabilité supérieure entre les sites selon les variables désirées.

2.5.2 Méthodes basées sur préférences déclarées

Dans un monde économique idéal, la valeur d'un changement de condition environnementale pourrait être déterminée par les mécanismes institutionnels existants en la révélant directement. Dans un monde moins idéal, il nous est possible d'utiliser les transactions réelles de certains marchés pour identifier la valeur de l'environnement. Cependant, dans beaucoup de cas réels, comme dans cette étude, il n'existe pas un tel marché qui pourrait permettre d'extraire la valeur des biens environnementaux non-marchands (e.g. services de la
biodiversité). Cette difficulté est d’autant plus présente que, très souvent, les transactions réelles de marché, bien qu’elles puissent révéler directement ou indirectement certaines valeurs d’usage d’un changement de l’environnement par des comportements de marché des consommateurs, ne peuvent pas illustrer la valeur totale de ce changement, qui inclut très souvent une proportion très importante de la valeur d’usage passive et qui n’est associée à aucun comportement observable (e.g. le bien-être issu d’un beau paysage) et de la valeur de non-usage (e.g. valeur d’existence, valeur d’option, valeur d’altruisme et valeur de leg). Les faits empiriques montrent que les composantes de la valeur de non-usage sont souvent plusieurs fois plus importantes que la valeur d’usage direct des ressources environnementales. Par exemple, Sander *et al.* (1990) ont calculé qu’à l’intérieur de la valeur totale des 15 rivières de l’État du Colorado aux États-Unis, seulement 1/5 constituait une valeur d’usage direct (e.g. irrigation, natation, pêche, tourisme) et que tout le reste constituait des valeurs de non-usage. Dans cette situation, nous devons utiliser les méthodes basées sur les préférences déclarées pour mesurer la valeur de l’environnement et des ressources naturelles via des comportements non observés sur le marché.

Les fondements théoriques des méthodes basées sur les préférences déclarées se basent sur les considérations de variations de la satisfaction d’un individu avant et après la réalisation d’une condition/situation environnementale hypothétique. Considérons un individu possédant un certain niveau de revenu dans une situation environnementale donnée. Si la variation de la condition environnementale peut réduire le niveau de satisfaction de cet individu, il peut dépenser une partie de son revenu dans le but de corriger ces impacts négatifs. Par exemple, il peut installer des équipements pour filtrer l’air dans sa maison pour lutter contre les effets négatifs de la pollution aérienne. Si un projet public peut améliorer la qualité de l’air, certaines dépenses pour lutter contre les effets négatifs des pollutions aériennes initialement engagées par cet individu deviendraient non-nécessaires, ainsi le niveau de satisfaction de l’individu augmenterait, en partie grâce à la réduction des dépenses préventives, en partie grâce à l’utilité directement obtenue de l’amélioration de l’environnement.

Les méthodes de préférences déclarées utilisent cette augmentation de niveau de satisfaction chez cet individu pour mesurer la valeur accordée par cet individu pour cette amélioration de la qualité de l’environnement. Ainsi, la logique de l’évaluation est de déterminer la valeur monétaire de cette variation de satisfaction, qui est théoriquement égale à la somme maximale d’argent que cet individu sera prêt à payer pour bénéficier de la condition améliorée de la qualité de l’air, tout en restant sur un même niveau initial de satisfaction globale, associé à la situation avant l’amélioration.

L’étape essentielle dans ces méthodes de préférences déclarées est de communiquer directement avec les individus en créant un marché simulé/hypothétique dans le but d’éliciter leur arbitrage entre le prix à payer (ou la compensation à accepter) et l’amélioration (ou la détérioration) de l’environnement à travers une enquête. Il est ensuite possible d’extrapoler les résultats moyens à l’ensemble de la population afin de connaître la valeur totale de l’élément ciblé.
3. Méthodologie / données

3.1 Sites d’étude

Les sites d’étude choisis pour le projet sont situés dans les BTSL, qui reposent sur la plateforme du Saint-Laurent, et possèdent une superficie de 29 000 km2 (Labbé et al., 2011; livrable 1A). Les critères de sélection ont permis de choisir deux BV représentatifs des caractéristiques principales des BTSL, soit le BV de la rivière Yamaska et le BV de la rivière Bécancour. Les BV devaient, entre autres, avoir une partie importante de leur territoire dans les BTSL, une quantité représentative et diversifiée des MH, une disponibilité de données hydrométriques et climatiques ainsi qu’une diversité en ce qui a trait aux pressions humaines ou naturelles. La description détaillée des bassins versants des BTSL ainsi que leurs critères de sélection est identifiée dans le rapport : Documentación et sélection des bassins versants à l’étude, partenariats et synthèse des données disponibles (Livrable 1).

Les caractéristiques principales des BV sélectionnées sont présentées par le Tableau 1. La forêt et les terres agricoles occupent la majeure partie du territoire des deux BV. Dans le cas de la Yamaska, 35 % et 43 %, du territoire est occupé par la forêt et l’agriculture respectivement. Pour ce qui est de la Bécancour, il s’agit plutôt de 54 % et 22 % du territoire (Tableau 4). Le BV de la rivière Bécancour se démarque par un pourcentage élevé de milieux humides représentant 11 % du bassin occupant principalement la portion des BTSL. Le BV de la rivière Yamaska, bien qu’il détiennes un faible pourcentage de MH (4 %), possède une grande diversité de MH, majoritairement des marécages (43 %), des tourbières boisées (30 %) ainsi que des marais (16 %) (Tableau 2). Les deux bassins versants détiennent plusieurs stations hydrométriques bien distribuées dans le réseau hydrographique afin d’étalonner et valider le modèle hydrologique.

<table>
<thead>
<tr>
<th>Bassin</th>
<th>Superficie</th>
<th>% BTSL / Appalaches</th>
<th>Lac de tête</th>
<th>Superficie des MH</th>
<th>% de MH</th>
<th>Complexes1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamaska</td>
<td>4 784 km²</td>
<td>60 / 40</td>
<td>Lac Brome</td>
<td>188 km²</td>
<td>3,9</td>
<td>495</td>
</tr>
<tr>
<td>Bécancour</td>
<td>2 620 km²</td>
<td>44 / 56</td>
<td>Lac Bécancour</td>
<td>279 km²</td>
<td>10,6</td>
<td>623</td>
</tr>
</tbody>
</table>

Tableau 2: Diversité des MH des bassins versants des rivières Yamaska et Bécancour en 2011

<table>
<thead>
<tr>
<th>Classe</th>
<th>Yamaska (%)</th>
<th>Bécancour (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bog</td>
<td>6,1</td>
<td>10,1</td>
</tr>
<tr>
<td>Eau peu profonde</td>
<td>2,5</td>
<td>0,8</td>
</tr>
<tr>
<td>Fen</td>
<td>3,5</td>
<td>3,7</td>
</tr>
<tr>
<td>Marécage</td>
<td>42,3</td>
<td>37,6</td>
</tr>
<tr>
<td>Marais</td>
<td>15,5</td>
<td>0,6</td>
</tr>
<tr>
<td>Prairie humide</td>
<td>0,6</td>
<td>1,2</td>
</tr>
<tr>
<td>Tourbière boisée</td>
<td>29,5</td>
<td>45,9</td>
</tr>
</tbody>
</table>

1Ici le terme « Complexes » spécifie le nombre de complexes de milieux humides dans le bassin versant.
Les cartes des deux BV à l'étude (Figure 1 et Figure 2) montrent la démarcation du territoire pour les portions appalachienne et les plaines des basses-terres. Le BV Yamaska présente plusieurs affluents importants qui prennent leur source au sud-est du bassin. Les trois régions administratives, en ordre de proportion du bassin, sont la Montérégie, le Centre-du-Québec et l’Estrie. Quelques municipalités de moyenne importance se retrouvent sur le territoire, notamment Saint-Hyacinthe, Granby et Bromont. Au niveau du BV Bécancour, une orientation est-ouest démontre en amont de nombreux lacs à la source de la rivière qui se jette dans le fleuve St-Laurent, à l’ouest. Des municipalités de moindre importance sont distribuées sur le territoire, telles que Bécancour, Plessisville et Thetford Mines. Deux régions administratives divisent le territoire, le Centre-du-Québec et Chaudière-Appalaches.
Figure 1: Carte du bassin versant de la rivière Yamaska

Sources des données
- Provinces naturelles du Québec : MDDEP (2010)
- Limites du bassin versant et réseau hydrologique : Centre d'expertise hydrique du Québec (2012)

Échelles originales

<table>
<thead>
<tr>
<th>Échelle</th>
<th>Échelle originaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassin versant</td>
<td>1 : 500 000</td>
</tr>
<tr>
<td>Québec</td>
<td>1 : 35 000 000</td>
</tr>
</tbody>
</table>

Figure 1: Carte du bassin versant de la rivière Yamaska
Figure 2 : Carte du bassin versant de la rivière Bécancour
3.2 Préparation de la base de données

3.2.1 Cartographie du territoire

3.2.1.1 Systèmes de classification

Tableau 3: Système de classification utilisée pour l’élaboration des cartes de l’occupation du territoire

<table>
<thead>
<tr>
<th>1er niveau</th>
<th>2e niveau</th>
<th>3e niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface anthropique</td>
<td>Bâti ouvert</td>
<td></td>
</tr>
<tr>
<td>imperméable</td>
<td>Bâti dense</td>
<td></td>
</tr>
<tr>
<td>Forêt</td>
<td>Feuillue</td>
<td>Feuillue ouverte</td>
</tr>
<tr>
<td></td>
<td>Mixte</td>
<td>Feuillue dense</td>
</tr>
<tr>
<td></td>
<td>Résineuse</td>
<td>Mixte ouvert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mixte dense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Résineuse ouverte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Résineuse dense</td>
</tr>
<tr>
<td>Hydrographie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sol nu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milieux humides</td>
<td>Marais</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marécage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eau peu profonde</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourbière boisée</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prairie humide</td>
<td></td>
</tr>
<tr>
<td>Végétation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourbière exploitée</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.1.2. Cartographie du territoire

Dans le cadre du projet, les analyses nécessitent l’élaboration de six cartes pour chacun des bassins versants. Ces cartes sont disponibles sous la forme d’une couche cartographique (shp).

- Une carte de l’occupation actuelle du territoire (2011)
- Une carte de l’occupation historique du territoire (1984)
- Une carte de l’occupation future du territoire (2050) selon les quatre scénarios (tendance actuelle, statu quo, optimiste et pessimiste)

Les cartes d’occupation actuelle et historique du territoire des BV à l’étude ont été produites à l’aide de mosaïques d’images satellitaires du capteur TM Landsat 5 normalisées radiométriquement. La couche des MH en 2011 provient de la cartographie détaillée des MH en 2010 effectuée par photo-interprétation par le Ministère du développement durable, de l’Environnement, Faune et des Parcs (MDDEFP) ainsi que Canards Illimités du Canada (CIC). L’unité cartographique minimale (UCM) est de 0,3 hectare, ce qui signifie que tous les MH ayant une superficie de 0,3 hectare ou plus ont été systématiquement cartographiés. La couche des MH en 1984 a été produite par l’entreprise Effigis Géo-Solutions avec l’aide de deux mosaïques d’images satellitaires du capteur TM Landsat 5 (été 1984 et printemps 1985).

Les cartes d’occupation future du territoire (2050) ont été effectuées par une simulation selon les tendances de changement de transition d’un état d’occupation du sol à un autre à partir de l’observation de ces changements sur une période de référence (1984 et 2011). Ces cartes ont pour objectif d’analyser le rôle des MH modélisés selon les conditions climatiques prescrites par le MRCC. Ainsi quatre scénarios de gestion des MH ont été élaborés pour la cartographie future :

- Statu quo (SQ) : Aucun changement sur l’état des MH par rapport à 2011
- Optimiste (Op) : Augmentation de 15 % de la superficie des milieux humides par rapport à l’année de référence (2011) – implique une augmentation de 4,5 % en 2011 à 5,2 % en 2050.
- Pessimiste (Pe) : Diminution de 15 % de la superficie des milieux humides au-delà du scénario tendance actuelle – implique une diminution de 4,5 % en 2011 à 2,6 % en 2050.

Le Tableau 4 présente le pourcentage de la superficie des BV occupée par les classes du premier niveau de la classification pour 1984, 2011 et 2050 (tendance actuelle). La cartographie de l’occupation du territoire montre une diminution de la superficie de champs agricoles au profit de la forêt et de la végétation pour les deux bassins versants à l’étude. Cette diminution est principalement observée dans le secteur des Appalaches. Il est également possible de constater une perte des milieux humides principalement au profit de l’agriculture dans le BV de la rivière Yamaska et pour l’exploitation des tourbières (canneberges) dans le BV de la rivière Bécancour.
Tableau 4 : Occupation du territoire historique, actuelle et future des BV des rivières Yamaska et Bécancour

<table>
<thead>
<tr>
<th>Classe</th>
<th>Yamaska (%)</th>
<th></th>
<th></th>
<th>Bécancour (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1984</td>
<td>2011</td>
<td>2050</td>
<td>1984</td>
<td>2011</td>
<td>2050</td>
</tr>
<tr>
<td>Agriculture</td>
<td>57,2</td>
<td>42,8</td>
<td>30,8</td>
<td>30,7</td>
<td>21,3</td>
<td>18,3</td>
</tr>
<tr>
<td>Anthropique</td>
<td>4,1</td>
<td>7,8</td>
<td>10,5</td>
<td>3,7</td>
<td>3,7</td>
<td>4,4</td>
</tr>
<tr>
<td>Forêt</td>
<td>29,4</td>
<td>34,7</td>
<td>43,8</td>
<td>47,3</td>
<td>53,9</td>
<td>56,5</td>
</tr>
<tr>
<td>Milieux humides</td>
<td>4,8</td>
<td>4,2</td>
<td>2,9</td>
<td>13,0</td>
<td>11,8</td>
<td>10,0</td>
</tr>
<tr>
<td>Hydrographie</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,4</td>
<td>1,3</td>
<td>1,3</td>
</tr>
<tr>
<td>Sol nu</td>
<td>0,0</td>
<td>0,1</td>
<td>0,2</td>
<td>1,0</td>
<td>0,9</td>
<td>1,0</td>
</tr>
<tr>
<td>Végétation</td>
<td>3,3</td>
<td>9,3</td>
<td>10,7</td>
<td>3,1</td>
<td>5,6</td>
<td>6,3</td>
</tr>
<tr>
<td>Tourbière exploitée</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,5</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Les Figure 3 et Figure 4 présentent les résultats de la cartographie d’occupation du territoire de 2011 des deux BV à l’étude pour le premier niveau du système de classification. Cet exercice cartographique pour l’année 2011 permet d’établir les grandes caractéristiques des régions à l’étude. Ainsi, les parties appalachiennes des deux BV, soit à l’est, sont majoritairement composées de forêt. On y retrouve également la majeure partie des lacs des deux territoires. Les sections se trouvant dans les BTSL sont, quant à elles, principalement agricoles avec une plus grande proportion de zones anthropiques, à l’exception d’une section du BV de la rivière Bécancour qui est occupée principalement par des MH. Il s’agit principalement de tourbières naturelles ou exploitées pour la canneberge.
Sources des données
- Milieux humides: MDDEP et CIC, 2011
- Limites du bassin versant: Centre d'expertise hydrique du Québec, 2012
- Cartographie du territoire: Cartel, 2012

Figure 3: Cartographie 2011 du BV de la rivière Yamaska
Figure 4: Cartographie 2011 du BV de la rivière Bécancour

Sources des données
- Milieux humides: MDDEP et CIC, 2011
- Limites du bassin versant: Centre d'expertise hydrique du Québec, 2012
- Cartographie du territoire: Cartel, 2012
3.2.2. Unité hydrologique relativement homogène (UHRH)

L’hétérogénéité spatiale du milieu est un facteur primordial devant être pris en compte dans la modélisation hydrologique. Une manière de caractériser cette hétérogénéité spatiale est de discrétiser le territoire d’étude (BV) en sous bassin versant ou unités hydrologiques relativement homogènes (UHRH), c’est-à-dire des aires sur lesquelles les caractéristiques physiques et les processus hydrologiques modélisés sont considérés comme comparables ou similaires dans leur nature et dans leur importance relative. Ces unités hydrologiques définissent alors l’échelle spatiale de calcul intégrée dans le modèle hydrologique. La division en UHRH est basée sur des caractéristiques physiographiques du BV telles que le réseau hydrographique et la topographie. Par la suite, ces UHRH sont définies par les caractéristiques de type d’occupation du sol et de pédologie.

Pour cette étude, les outils de modélisation utilisés que sont le SIG PHYSITEL (Rousseau et al., 2011) et le modèle hydrologique HYDROTEL (Fortin et al., 2001) utilisent ce concept d’UHRH. Ces unités spatiales, à l’échelle du versant et associées à un tronçon unique du réseau hydrographique présentent des avantages :

- S’assurer de la bonne prise en compte de l’hétérogénéité spatiale du BV
- Définir un nombre d’unités spatiales raisonnables permettant de restreindre le temps de calcul lors des simulations
- Préserver un niveau d’intégration des cours d’eau satisfaisant

La méthodologie spécifique à la conception des UHRH au sein du SIG PHYSITEL est abordée dans la section 3.4.1 : Préparation des données à l’aide du SIG PHYSITEL du présent document et est plus spécifiquement décrite dans le rapport détaillé : Modélisation hydrologique des milieux humides dans les basses-terres du Saint-Laurent (Livrable 2A).

3.2.3. Unités spatiales

La division du territoire en des unités spatiales a été une étape importante pour l’analyse des indicateurs spatiaux. L’approche multiechelle permet de représenter, à plusieurs niveaux, différentes informations pour des objectifs distincts. Le niveau le plus grossier, le BV, sert à donner un portrait de la situation et ne nécessite pas de cartographie, mais représente plusieurs informations pouvant être établies par des statistiques spatiales. Un niveau intermédiaire consiste à faire le diagnostic du territoire en demeurant à une échelle plus ou moins grossière. La taille des sous-bassins (SB) peut varier entre 30 et 100 km² (moyenne à 50 km²) alors qu’au niveau le plus fin, les microbassins (MB) ont en moyenne une taille de 10 km², ce qui permet d’appuyer les interventions sur le territoire (Moreno-Mateos et Comin, 2010).

La représentation en deux niveaux répond à de nombreux objectifs spécifiques :

- Élaborer un niveau fin qui aidera les gestionnaires, avec une division par MB, pour l'intervention relative aux MH, avec une taille moyenne de 10 km²
- Établir un niveau intermédiaire représentant diverses parties du territoire de façon grossière en SB, agrégé des MB, avec une taille moyenne de 50 km²
- S’assurer de la compatibilité avec les UHRH, les MB, les SB et les BV
 - S’appuyer sur les informations géomatiques pour l’agrégation et la segmentation des UHRH
La méthode employée pour concevoir les unités spatiales est plus amplement élaborée dans le rapport sur un outil d’aide à la décision pour la gestion des milieux humides : cartographie des biens et services écologiques à l’aide d’indicateurs spatiaux. (livrable 4BC).

3.3 Caractérisation végétale

Les tourbières ont déjà fait l’objet d’études dans le BV de la Bécancour par la Dr Poulin et collaborateurs. Nous avons donc jugé nécessaire de mettre l’accent sur l’étude de la caractérisation des marécages. La caractérisation des principales communautés végétales et leur structure dans les marécages a été effectuée par une sélection de 56 marécages répartis également entre les deux BV (Yamaska et Bécancour) ainsi qu’entre les deux portions de territoire au sein des bassins (Appalaches et Basses-Terres) et les deux types de marécages (Isolé et Riverain). Un plan d’échantillonnage équilibré a été établi, comptant 28 marécages isolés et 28 marécages riverains, répartis équitablement sur le territoire entre les deux BV et les portions appalachiennes et des basses-terres dans chaque bassin. Les marécages isolés et riverains ont été contrastés en omettant les marécages limitrophes, i.e. ceux qui représentaient des situations intermédiaires quant à leur lien hydrologique avec les cours d’eau. Ainsi, un marécage riverain devait être traversé par un cours d’eau (ou présence d’un cours d’eau dans une zone tampon de 20 m autour de leur périphérie) et les marécages isolés devaient être à plus de 300 m de tout cours d’eau. Parmi tous les marécages riverains ainsi définis, une cote de degré de connexion au cours d’eau a été attribuée d’après une interprétation de photographies aériennes pour maximiser le lien hydrologique des sites sélectionnés avec les cours d’eau. Les sites sélectionnés devaient aussi avoir été classifiés comme marécage avec une cote de fiabilité ‘bon’ selon la cartographie détaillée pour éviter les sites mal classifiés. Les marécages adjacents au fleuve Saint-Laurent et aux lacs ont été éliminés ainsi que ceux inférieurs à 1 ha. Ceux sélectionnés devaient être distants d’au moins 500 m entre eux. Parmi les sites rencontrant ces critères, les 56 marécages ont été sélectionnés au hasard. Leur taille variait entre 1 et 8 ha pour une taille moyenne de 3 ha.

Un nombre de placettes proportionnel à la taille de chaque marécage a été établi et celles-ci disposées selon un plan d’échantillonnage aléatoire. Une placette par hectare a été échantillonnée avec un minimum de 3 placettes pour les sites de moins de trois hectares, totalisant 213 placettes dans les deux bassins versants. Le couvert des espèces arborescentes ont été estimés grâce à l’échelle de Braun-Blanquet dans des placettes circulaires de 11.28 m de rayon (400 m², soit 1/25 ha) alors qu’une sous-placette de 5 m de rayon (79 m²), centrée sur la grande, a été utilisée pour évaluer le couvert des espèces de toutes les autres strates de végétation, incluant les arbustes, herbacées, ptéridophytes, mousses et lichens. Des données environnementales ont été prises dans la grande placette telles que la pierrosité, l’épaisseur des horizons minéraux, l’épaisseur et le degré de décomposition de la tourbe lorsque présente, les évidences de microtopographie ainsi que la texture et la cote de drainage du sol et l’abondance et les dimensions des mouchetures. Ces trois derniers paramètres sont reliés à la présence de l’eau dans le sol et seront utilisés

2 **Pierrosité** : Normalement la pierrosité du sol est le % de son volume qui est constitué de particules rocheuses de plus de 2 m tout en précisant les dimensions observées : gravier, cailloux, pierres et bloc. Ça se fait dans une coupe témoin du sol de 1 m cube.

3 **Mouchetures** : L’oxydation du fer lors de l’oscillation de la nappe phréatique provoque les mouchetures de couleur rouille. Donc les mouchetures sont une indication de l’amplitude des variations de la nappe phréatique et de bons indicateurs d’un sol humide.
comme proxy pour ordonner les sites selon leur hydropériode étant donné que celle-ci n’a pas été mesurée directement dû aux contraintes de temps et d’instrumentation.

Les données de végétation ont été principalement analysées à l’aide de statistiques multivariables. Dans un premier temps, une analyse canonique de redondance (RDA) a été effectuée afin d’évaluer l’importance du type de marécages, isolés et riverains, dans la répartition des assemblages d’espèces. Par la suite, une RDA a été effectuée avec les variables environnementales déterminées par une sélection progressive (pas à pas) pour tenter de trouver des patrons liant ces variables aux assemblages d’espèces végétales au sein des marécages isolés et riverains (annexe 3 pour descriptions des variables). Une analyse de partitionnement de la variance a également été accomplie pour comparer l’importance relative de trois groupes de variables dans la répartition de la végétation. D’abord les variables du sol comme la texture et les mouchetures, ensuite les variables de microtopographie tel que la présence de racines ou de roches servant de support végétal et finalement les variables du paysage comme la superficie couverte par l’agriculture dans une zone tampon d’un (1) km autour des sites (annexe 3 pour descriptions des groupes de variables). Une analyse IndVal (Species Indicator Values) a été utilisée pour identifier plus clairement des espèces indicatrices des différents types de marécages. L’indice calculé par cette méthode est une combinaison de la fréquence et de l’abondance d’une espèce au sein d’un groupe. Ainsi, une espèce exclusive à un type de sites (spécificité) et retrouvée dans la majorité des sites de ce groupe (fidélité) aura un indice IndVal fort. La richesse et la diversité globale, ainsi que le couvert des différentes strates de végétation ont été contrastées entre les marécages riverains et isolés à l’aide de tests de T par permutations.

3.4 Modélisation hydrologique

Les points de méthodologie essentiels à la bonne compréhension (i) de la démarche de modélisation hydrologique adoptée et (ii) des résultats présentés sont développés dans les sections suivantes du présent document. Par ailleurs, une description complète de chacune des étapes de mise en œuvre de la modélisation hydrologique est disponible dans le rapport détaillé : Modélisation hydrologique des milieux humides dans les basses-terres du Saint-Laurent (Livrable 2A). Toute partie ayant des compléments d’informations dans le rapport détaillé sera annotée comme telle.

3.4.1. Préparation des données à l’aide du SIG PHYSITEL

- Base de données et SIG PHYSITEL

PHYSITEL (Rousseau et al., 2011; Turcotte et al., 2001) est un SIG dédié à la préparation des données descriptives d’un bassin versant en support à la modélisation hydrologique par le modèle HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003). PHYSITEL détermine alors la structure d’écoulement d’un BV à partir (i) d’un Modèle Numérique d’Altitude (MNA) d’une résolution de 30 m et (ii) d’une représentation vectorielle du réseau hydrographique (défini par un degré élevé de détail allant jusqu’à l’ordre 5 de la classification de Strahler). De plus, il permet d’intégrer les données spatiales d’occupation et de type de sols (section 3.2.1). PHYSITEL réalise cette caractérisation physique à l’échelle de petites sous-unités spatiales, les UHRH, issues de la subdivision du BV, pour lesquelles les caractéristiques physiques, spatiales et hydrologiques sont considérées comme homogènes.
• Étapes d’intégration d’un BV au SIG PHYSITEL

La représentation détaillée du réseau hydrographique et de la structure d’écoulement du BV permet de raffiner l’identification des lacs, réservoirs et petites étendues d’eau ne pouvant être repérés par la simple analyse du MNA. Pour le projet, le degré de détail a été défini pour les BV de la Bécancour et de la Yamaska par respectivement un ordre 2 et 3. Les ordres ainsi définis aboutissent à l’obtention d’un nombre raisonnable d’UHRH permettant de restreindre le temps de calcul lors des simulations tout en préservant un niveau d’intégration des cours d’eau satisfaisant.

L’étape suivante requise par PHYSITEL est la détermination d’altitudes modifiées sous le réseau hydrographique et sur les berges des cours d’eau. Ce processus permet de simplifier la structure d’écoulement et le drainage de l’eau de la partie terrestre jusqu’au cours d’eau. Par la suite, en se basant sur le MNA et sur le réseau hydrographique vectoriel, PHYSITEL effectue le calcul de pente de chaque pixel composant la matrice du MNA selon les couples voisins d’altitudes nord-sud et est-ouest. Ces pentes sont à la base de la détermination des directions d’écoulement calculées à l’aide de l’algorithme D8-LTD (Orlandini et al., 2003).

Suite au processus d’identification de la structure de drainage du BV, l’étape suivante consiste à régénérer ou imposer (comme c’est le cas présentement pour le projet) le réseau hydrographique en accord avec la représentation existante du réseau intégrée au préalable à PHYSITEL, effectuant ainsi un calque de ce réseau. L’application de ce réseau nouvellement imposé permet la segmentation du bassin versant en UHRH, définie alors comme des surfaces d’écoulement vers un tronçon de ce réseau hydrographique. Plus précisément, dans le projet en cours, chaque UHRH représente un versant du cours d’eau, ainsi, deux UHRH sont associées à un tronçon du cours d’eau et trois UHRH sont associées au tronçon de tête, avec respectivement deux UHRH pour les rives et un UHRH pour l’aire drainée en amont du point source du tronçon (Figure 5). Chacune des UHRH est alors associée à un tronçon unique.

La caractérisation complète du bassin versant au sein de PHYSITEL nécessite finalement l’intégration de l’occupation et des types de sol pour chaque UHRH (Fortin et al., 2001), ainsi que celle des milieux humides. Pour l’occupation du sol, le SIG PHYSITEL procède au calcul des pourcentages de chacune des classes d’occupation du sol pour chacun des UHRH constituant le BV. Pour les types de sol, il est à noter que la version actuelle du modèle HYDROTEL intègre les valeurs des propriétés hydrodynamiques des types de sol comme des constantes sur les différents horizons verticaux des sols. Des valeurs par défaut, basées sur les tables de Rawls et Brakensiek (1989), sont disponibles et peuvent être attribuées aux caractéristiques des sols selon les textures de ces derniers (pourcentages sable, limon, argile); par contre, l’usager peut attribuer des valeurs plus appropriées. Dans le cas présent, les types de sol sur les BV à l’étude ont été déterminés en associant les textures de la carte des types de sol avec les classes de type de sol présents dans la table de Rawls et Brakensiek (1989) déjà intégrées dans le SIG PHYSITEL. Ainsi, le SIG PHYSITEL procède au calcul des propriétés hydrodynamiques des sols pour chacun des UHRH constituant le bassin versant.

Pour les besoins de l’étude en cours, la définition des MH achève l’intégration complète du BV au SIG PHYSITEL. Sur la base de la carte détaillée de l’occupation des sols, incluant les MH, le SIG PHYSITEL procède alors au calcul de l’aire de chacun des MH. Cette aire est considérée comme l’aire maximale occupée par le MH. Par la suite, en associant la carte des
orientations des écoulements, l’aire drainée par chacun des MH est calculée. A ce stade, la distinction typologique entre MH riverain et isolé se fait alors selon un pourcentage de contact (ou seuil d’adjacence) avec le réseau hydrographique, versus l’aire totale du MH. Ce seuil est fixé par l’utilisateur (dans notre cas, ce pourcentage vaut 1%). Finalement une nouvelle carte est produite par le SIG PHYSITEL visant à illustrer les MH riverains et isolés ainsi que leurs aires drainées respectives.

La représentation des MH au sein du modèle HYDROTEL et leur définition au sein du SIG PHYSITEL s’appuient aussi sur le concept de MHE proposé par Wang et al. (2008a). Ce concept assume que, pour un sous-bassin donné, l’aire occupée par l’ensemble des MH peut être considérée comme une aire unique égale à la somme des aires des MH comprises dans le sous-bassin. Ce concept s’applique pour chacune des typologies précédemment définies (riveraines et isolées) par la sommation des paramètres définis (aire maximale et aire drainée) à l’échelle de l’UHRH.

Figure 5 : Schéma illustrant le MHE (MH équivalent ou Hydrological Equivalent Wetland) et le découpage de l’UHRH en versant

Des conditions s’appliquent à ce concept de MHE à savoir (i) la présence d’un seul MHE isolé et/ou riverain au sein d’une UHRH et (ii) l’appartenance exclusive d’un MHE à une seule UHRH. Les modalités d’application de ces conditions et des spécificités annexes du SIG PHYSITEL sont reprises dans le rapport détaillé : *Modélisation hydrologique des milieux humides dans les basses-terres du Saint-Laurent (Livrable 2A)*.

3.4.2. Intégration des BV au modèle hydrologique HYDROTEL

- **Le modèle hydrologique HYDROTEL**

Suite à l’application du SIG PHYSITEL, le BV visé doit être intégré au modèle hydrologique HYDROTEL. Ce dernier constitue un modèle hydrologique semi-distribué compatible avec la télédétection et supporté par le SIG PHYSITEL. Les calculs effectués par le modèle sont faits sur les UHRH, qui forment l’unité spatiale de calcul. Sur le plan temporel, HYDROTEL est un modèle qui fonctionne en continu (pas de temps journalier ou de trois heures), par opposition à un modèle par événement.

processus hydrologiques, HYDROTEL offre le choix entre un ou plusieurs algorithmes (tableau 5). La disponibilité de ces divers algorithmes permet de sélectionner le sous-modèle le plus adapté possible sur un bassin versant compte tenu de la disponibilité des données d’entrée. Au tableau 5, les algorithmes de simulations des processus hydrologiques mis en évidence (caractères en gras) sont ceux utilisés lors des simulations hydrologiques courantes.

Tableau 5 : Processus simulés et algorithmes disponibles pour les simulations hydrologiques

<table>
<thead>
<tr>
<th>Processus hydrologiques</th>
<th>Algorithmes disponibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Interpolation des données météorologiques</td>
<td>1.1 Polygones de Thiessen</td>
</tr>
<tr>
<td></td>
<td>1.2 Moyenne pondérée aux 3 stations les plus proches</td>
</tr>
<tr>
<td>2. Évolution du couvert nival</td>
<td>2.1 Approche mixte (degrés-jour) et bilan énergétique</td>
</tr>
<tr>
<td>3. Évapotranspiration potentielle</td>
<td>3.1 Thornthwaite</td>
</tr>
<tr>
<td></td>
<td>3.2 Linacre</td>
</tr>
<tr>
<td></td>
<td>3.3 Penman-Monteith</td>
</tr>
<tr>
<td></td>
<td>3.4 Priestley-Taylor</td>
</tr>
<tr>
<td></td>
<td>3.5 Hydro-Québec</td>
</tr>
<tr>
<td>4. Bilan d’eau vertical</td>
<td>4.1 Bilan vertical en trois couches (BV3C)</td>
</tr>
<tr>
<td></td>
<td>4.2 CEQUEAU</td>
</tr>
<tr>
<td>5. Écoulement sur la partie terrestre du bassin</td>
<td>5.1 Onde cinématique</td>
</tr>
<tr>
<td>6. Écoulement par le réseau hydrographique</td>
<td>6.1 Onde cinématique</td>
</tr>
<tr>
<td></td>
<td>5.2 Onde diffusante</td>
</tr>
</tbody>
</table>

L’écoulement sur la partie terrestre du bassin est simulé par la production initiale d’un hydrogramme géomorphologique spécifique (HGM) à chaque UHRH et généré par l’écoulement de pixel en pixel sur une UHRH d’une lame d’eau de référence (0,6 mm). Il est important de noter que les flux entre les algorithmes qui simulent les cinq premiers processus hydrologiques sont réalisés au niveau des UHRH. Ainsi, le sous-modèle qui effectue le calcul de l’écoulement sur la partie terrestre du bassin reçoit, à chaque pas de temps et au niveau de l’UHRH, une lame d’eau qu’il distribue dans le temps en fonction de l’hydrogramme géomorphologique précédemment estimé à partir de la structure spécifique d’écoulement interne à l’UHRH. Finalement, l’écoulement par le réseau hydrographique est simulé sur les tronçons du réseau. Les entrées de chaque tronçon proviennent alors du tronçon amont et des apports latéraux des UHRH connexes.

Une description plus complète des algorithmes disponibles ainsi que les paramètres d’ajustements s’y rapportant sont disponibles dans le rapport détaillé : *Modélisation hydrologique des milieux humides des basses-terres du Saint-Laurent (Livrable 2A).*

- Préparation de la base de données

L’ensemble des fichiers d’entrée du modèle est généré à l’aide de PHYSITEL. En complément, HYDROTEL nécessite l’ajout de fichiers portant sur (i) l’évolution annuelle de la profondeur racinaire et de l’indice foliaire des cultures et forêts, (ii) les données météorologiques (précipitations journalières, températures journalières maximales et minimales) et (iii) hydrométriques (débits en rivière) enregistrées aux stations associées au bassin versant.
Dans le contexte actuel, les données météorologiques calculées aux points de la grille météorologique du Centre d’Expertise Hydrique du Québec (CEHQ), respectivement 28 points pour la Bécancour et 52 points pour la Yamaska, seront utilisées dans le modèle HYDROTEL. À titre de précision, les données météorologiques sur grille (précipitations et températures) produites par le CEHQ et couvrant la période de 1960-2010, sont issues de l'interpolation des données collectées aux stations du Programme de surveillance du climat du MDDEFP. Elles n'ont pas le statut de données officielles et leur usage vise l'alimentation de modèles hydrologiques tirant avantage de l'utilisation de données sur grille. La méthode d'interpolation par krigage isotrope est détaillée dans le rapport de Poirier et al. (2012).

- Prise en compte des milieux humides

Il est proposé ici d'ajouter un module supplémentaire à HYDROTEL permettant de prendre en compte le fonctionnement particulier des MH en discriminant deux typologies particulières : les MH riverains et isolés. Le développement d’HYDROTEL consistait en la prise en compte des MH afin de simuler leurs effets sur la réponse hydrologique à l’échelle du BV. Les paramètres de superficie et de volume d’eau à des niveaux « normaux » et « maximaux » ont donc été définis sur la base de la littérature. Ces paramètres sont soit: (i) obtenus par le biais du SIG PHYSITEL, (ii) définis selon des relations issues de la littérature (Liu et al., 2008; Neitsch et al., 2005; Wang et al., 2008a), ou (iii) calculés au pas de temps journalier dans le modèle HYDROTEL.

L'intégration des MH dans le processus de modélisation nécessite la définition et le calcul de bons nombres d’indicateurs. Tout d’abord les surfaces des MHE isolés et riverains doivent être calculées afin de contribuer au calcul des bilans hydrologiques. Cette surface est dépendante du volume d’eau emmagasiné par le MHE et est mise à jour à chaque pas de temps.

Pour les milieux humides riverains et isolés, la surface maximale correspond à celle identifiée par le SIG PHYSITEL sur la carte d'occupation des sols. La surface dite normale correspond, quant à elle, à 30% de la surface maximale tel que décrit dans les travaux de Liu et al. (2008). Par contre, le calcul des volumes maximal et normal diffère entre les MH isolés et riverains équivalents. Pour les milieux isolés, ces volumes découlent d’une relation aire volume décrites dans les travaux de Yang et al. (2005). Pour les milieux riverains, ces volumes découler ont d’une relation tenant compte des hauteurs d’eau présentes dans le milieu. Les valeurs attribuées à ces hauteurs s’appuient sur les travaux de Liu et al. (2008).

Lors du calcul du bilan hydrologique, les membres de l’équation se composent de paramètres représentant: (i) les différence de volumes d’eau présents en fin et en début du pas de temps de calcul, (ii) le volume d’eau intercepté par le MHE, (iii) l’apport en eau par les précipitations ou la fonte du couvert nival, (iv) le volume d’eau perdu par évaporation, (v) le volume d’eau s’écoulant à la base du MH, (vi) le volume quittant le MHE à la surface et particulièrement dans le cas des MH riverains (vii) le volume d’eau échangé avec le cours d’eau.

La méthode employée pour intégrer les milieux humides, ainsi que les équations relatives à cette intégration et les algorithmes de calculs pour l’estimation des flux associés aux MHE isolés et riverains sont détaillées et décrites de manière exhaustive dans le rapport détaillé : Modélisation hydrologique des milieux humides des basses-terres du Saint-Laurent (Livrable 2A).
3.4.3. Calage et validation du modèle hydrologique HYDROTEL

- Calage du modèle hydrologique

Le calage d'un modèle hydrologique pour un BV consiste à ajuster les paramètres physiques et les fonctions qui le gouvernent de façon à reconstituer un hydrogramme similaire à celui observé. Il consiste à définir le modèle à construire afin de le faire coïncider au maximum avec les observations réelles prises comme référence. Dans le cadre des travaux présentés, une subdivision théorique de chacun des BV en trois secteurs, basée sur des critères physiques et correspondant à un regroupement d'UHRH a été réalisée. Cette subdivision correspond pour la Bécancour à un secteur aval (AV), médian (MED) et amont (AM) et pour la Yamaska à un secteur aval (AV), un premier secteur amont (AM1) et un second secteur amont (AM2). Cette subdivision a permis de définir des paramètres adaptés à chacun des secteurs, rendant le calage plus cohérent.

Afin de s'assurer de la validité de ces ajustements, le calage est réalisé sur une période couvrant cinq années consécutives. De plus, une période proche de la date à laquelle a été réalisée la carte d'occupation des sols utilisée est requise afin de s'assurer de la bonne prise en compte des milieux présents et éviter des ajustements arbitraires liés à des artefacts de correction. Pour le Québec, une année de calage débute à l'automne et se termine au début de l'automne de l'année suivante afin de s'assurer que toutes les précipitations de neige soient enregistrées rendant ainsi disponible le volume nécessaire à la crue printanière.

- Qualité du calage

Le modèle hydrologique HYDROTEL permet une appréciation visuelle de l'impact des ajustements sur l’hydrogramme simulé. Le critère visuel consiste à comparer, pour chaque année, la forme de l'hydrogramme de la crue observée avec celle de la crue simulée. Cependant, la modélisation fait intervenir des paramètres non directement mesurables et devant être calés en optimisant la valeur d’un critère numérique appelé fonction objectif, basée sur l’erreur du modèle. Le critère de Nash et Sutcliffe (1970), basé sur l’erreur quadratique moyenne, est très couramment utilisé comme fonction objectif, et permet d’évaluer la qualité de l’hydrogramme simulé à partir des écarts entre les valeurs journalières simulées et observées. Ce critère, égal à 1 en condition d’ajustement parfait, est considéré acceptable pour le calage d’un bassin versant non régularisé (c.-à-d., sans infrastructure telle que des barrages) lorsque sa valeur se situe entre 0,7 et 0,8.

- Validation du calage

Lorsque le calage est jugé satisfaisant selon les critères d’évaluation, une validation est réalisée. L’étape de validation consiste en une simulation portant sur une période différente de celle du calage, mais avec les mêmes valeurs de paramétrage. De plus, la même fonction dite objectif est utilisée afin de vérifier la qualité de la validation. Les résultats obtenus doivent corroborer la qualité du calage. En cas de résultats moins satisfaisants et donnant des valeurs du critère de validation en deçà du seuil d’acceptabilité, un nouveau calage devrait être réalisé.
3.4.4. Méthodes d’analyses

- Analyse comparative des sorties du modèle hydrologique

L’analyse sous-tend en premier lieu l’évaluation du rôle des MH afin de qualifier les BSÉ associés et de quantifier leur impact sur les débits en rivières. La méthode employée pour la modélisation hydrologique repose sur une analyse comparative des données de sorties du modèle HYDROTEL, à la suite de deux simulations en parallèles : (i) la première avec la prise en compte des milieux humides et (ii) la seconde sans considérer le rôle hydrologique des milieux humides tout en préservant les paramètres des différents processus simulés par HYDROTEL calés précédemment avec la prise en compte des milieux humides. Les différences observées entre les sorties des deux modalités de simulation sont assumées comme étant essentiellement le seul fait des fonctions assurées par les MH. Cette même procédure est appliquée sur l’ensemble des analyses pour l’obtention des résultats de l’étude en cours. À noter que les résultats se limiteront essentiellement à l’exutoire des bassins à l’étude, favorisé pour son caractère sommatif visant à décrire l’impact global des milieux humides sur l’ensemble du bassin versant, et ce bien que le modèle HYDROTEL permette d’obtenir au besoin les débits de tous les tronçons du réseau hydrographique. Certains résultats présentés à un autre niveau du réseau hydrographique sont clairement mentionnés et justifiés dans les sections suivantes.

- Analyse de sensibilité

Suite au calage et à la validation du modèle hydrologique HYDROTEL, une analyse de sensibilité des paramètres descriptifs des MH a été conduite pour le bassin Bécancour. Cette analyse vise essentiellement à cibler les paramètres qui sont les plus influents pour diverses conditions hydrologiques soit en périodes : (i) d’étiage, (ii) de crue ou (iii) dite normale.

L’ensemble des résultats de cette analyse est reporté dans le rapport détaillé : Modélisation hydrologique des milieux humides des basses-terres du Saint-Laurent (Livrable 2A).

- Impact général des MH

De manière similaire, l’impact des MH sur l’ensemble des débits sous les trois conditions hydrologiques précédentes a été illustré. Pour ce faire, une représentation sous la forme de courbes de fréquences relatives cumulées des débits a été favorisé pour les diverses conditions mentionnées. Ces courbes des débits obtenus avec et sans prise en compte des MH à l’exutoire des bassins ont été présenté en graphique. Les classes des débits ou conditions hydrologiques ont été déterminées en fonction de certains seuils.

La procédure complète de détermination des seuils de débits définissant les conditions hydrologiques est disponible dans le rapport détaillé : Modélisation hydrologique des milieux humides des basses-terres du Saint-Laurent (Livrable 2A). Pour le présent document, seuls les seuils de fréquence de non-dépassement et les conditions hydrologiques associées sont reportés dans le Tableau 6.
Définition des indicateurs hydrologiques (IH)

Les régimes hydrologiques sont soumis à des perturbations drastiques caractérisées par des valeurs extrêmes telles que le débit maximum et le débit minimum. L’usage d’indicateurs hydrologiques (IH) pour décrire ces régimes est alors courant afin de réduire les efforts de calcul et les redondances dans les variables d’analyse, tout en s’assurant de la représentativité des critères des régimes hydrologiques et de leur transféribilité à d’autres contextes. Dans le cadre de ces travaux, des indicateurs synthétiques et opérationnels, pour la caractérisation des régimes hydrologiques des deux bassins versants à l’étude, ont été définis sur la base de ceux utilisés par le CEHQ et le MDDEFP, dans un souci d’uniformisation.

- Débit d’étiage pour différentes récurrences et différentes durées.
 - $Q_{2.7}$: Débit d’étiage de récurrence deux ans sur sept jours consécutifs
 - $Q_{10.7}$: Débit d’étiage de récurrence dix ans sur sept jours consécutifs
 - $Q_{5.30}$: Débit d’étiage de récurrence cinq ans sur trente jours consécutifs

- Débit de crue pour différentes récurrences et différentes durées.
 - Q_2 : Débit de crue de récurrence deux ans
 - Q_{20} : Débit de crue de récurrence vingt ans
 - Q_{100} : Débit de crue de récurrence cent ans

Ces indicateurs sont également déterminés pour différentes périodes : (i) annuelle (1er janvier au 31 décembre) et (ii) estivale (1er juin au 31 octobre - couvrant la période d’écoulement en eaux libres). De plus, ces indicateurs sont obtenus par une représentation suivant une distribution lognormale, retenue sur la base du critère Bayesian Information Criterion (BIC). Ce critère est une mesure de pertinence d’un modèle utilisant le principe du maximum de vraisemblance. Il s’agit d’un indicateur de performance permettant la comparaison de différents modèles afin de choisir le meilleur d’entre eux. Selon la définition du critère BIC (Schwarz, 1978), choisir un modèle en maximisant la vraisemblance revient à choisir le modèle ayant le plus petit BIC et donc la plus petite somme des carrés résiduels, qui correspond à la variabilité non expliquée par le modèle étudié. Dans notre cas, différents modèles de distribution statistique, appliqués à nos indicateurs hydrologiques, ont été évalués (ex. : Lognormale, Gumbel, Gamma, Normale, GEV et Exponentielle) dans différentes conditions d’évaluation (observation annuelle, saisonnière, conditions météorologiques particulières). Le modèle de distribution retenu est celui qui a montré, dans la majorité des cas, le BIC le plus faible. Aussi à titre de précision, les indicateurs de crues découlent d’une analyse statistique sur les débits maximums simulés pendant la période alors que les indicateurs d’étiages découlent d’une analyse statistique sur les débits moyens minimums sur sept (7) et trente (30) jours consécutifs pendant la période visée.

L’ensemble de ces indicateurs atteste des variations des régimes hydrologiques et sert de points d’analyse à l’évaluation de l’impact des MH sur la réponse hydrologique du BV ainsi
que leur capacité à mitiger les effets des CC. Précisons que l’impact des MH sur ces indicateurs s’exprime par une variation (%) de l’indicateur calculé avec prise en compte des MH par rapport au même indicateur calculé sans prise en compte des MH selon l’équation :

\[IMH = 100 \times \left(\frac{IH_{AMH} - IH_{SMH}}{IH_{SMH}} \right) \]

où \(IMH \) représente l’impact des MH sur un indicateur hydrologique; \(IH_{AMH} \) l’IH calculé avec la prise en compte des MH; \(IH_{SMH} \) l’IH calculé sans la prise en compte des MH.

3.4.5. Le contexte de changement climatique

Les scénarios climatiques proposés reposent sur une approche de modélisation climatique régionale à l’aide du MRCC (Caya et Laprise, 1999) et plus spécifiquement diverses versions 4. du modèle (De Elia et Côté, 2010; Paquin, 2010) sur des domaines centrés, notamment sur : (i) le Québec, formé par 111*87 tuiles ayant une résolution horizontale de 45 km (vrai à 60°N), et (ii) l’Amérique du Nord, formé par 200*192 tuiles de même résolution horizontale. Toutes ces simulations futures intègrent le scénario A2 d’émission de gaz à effet de serre (Nakicenovic et al., 2000). Plus particulièrement, pour ce projet, et afin de tenir compte de l’incertitude liée à la modélisation climatique, dix scénarios de projections climatiques du MRCC (Tableau 7), couvrant la période 1961-2099, ont été fournis par le consortium sur la climatologie régionale et l’adaptation aux changements climatiques, Ouranos.

Tableau 7 : Description des scénarios climatiques du MRCC

<table>
<thead>
<tr>
<th>Simulation</th>
<th>acu</th>
<th>adc</th>
<th>adj</th>
<th>adl</th>
<th>aet</th>
<th>aev</th>
<th>afx</th>
<th>agr</th>
<th>agx</th>
<th>aha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version du MRCC</td>
<td>4.1.1</td>
<td>4.1.1</td>
<td>4.2.0</td>
<td>4.2.0</td>
<td>4.2.3</td>
<td>4.2.3</td>
<td>4.2.3</td>
<td>4.2.3</td>
<td>4.2.3</td>
<td>4.2.3</td>
</tr>
<tr>
<td>Pilote</td>
<td>MCGC</td>
<td>MCGC</td>
<td>MCGC</td>
<td>MCGC</td>
<td>MCGC</td>
<td>MCGC</td>
<td>MCGC</td>
<td>ECHAM</td>
<td>ECHAM</td>
<td></td>
</tr>
<tr>
<td>Membre</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Domaine</td>
<td>Québec</td>
<td>Québec</td>
<td>Québec</td>
<td>AMNO</td>
<td>AMNO</td>
<td>AMNO</td>
<td>Québec</td>
<td>Québec</td>
<td>AMNO</td>
<td></td>
</tr>
</tbody>
</table>

Ces simulations diffèrent notamment par les pilotes, soit la source de données fournissant les conditions aux frontières du domaine. Les huit simulations pilotées par un modèle climatique global (MCG) ont été réalisées par les membres 4 et 5 de la troisième génération du modèle couplé climatique global (MCGC3) (Flato et Boer, 2001; Scinocca et al., 2008), qui diffèrent par leurs conditions initiales, produits par le Centre Canadien de la Modélisation et de l’Analyse Climatique (CCMAC). La résolution horizontale du MCGC3 est de 3,75°. Les deux dernières simulations sont pilotées par le membre 1 du modèle couplé climatique global allemand ECHAM5 (Junglaus et al., 2006) possédant une résolution horizontale d’environ 1,87°.

La qualité d’une projection en climat futur produite à partir de modèles de climat dépend de la capacité de ces derniers à reproduire adéquatement le climat. Dans le cadre du projet actuel, la validation des données du MRCC n’a pas été nécessaire dans la mesure où Ouranos a remis des données débiaisées (Mpelasoka et Chiew., 2009) de précipitations et de températures maximales et minimales au centre des tuiles de la grille du CEHQ d’une résolution de 25 km.

Le premier exercice (section 3.4.5) devait donc permettre de rendre compte de l’évolution de l’impact des MH (tels qu’ils sont présents actuellement) dans le temps. Ainsi, les simulations hydrologiques réalisées sur les trois périodes climatiques mentionnées (H1, H2 et H3) ont été faites sur la base de la carte actuelle d’occupation des sols, soit celle de 2011. En effet, une condition d’occupation des sols donnée pour une année peut s’appliquer sous une période temporelle plus grande.

Le second exercice (section 3.4.6) devait permettre de comparer les valeurs de nos indicateurs hydrologiques dans un contexte de modification d’occupation des sols et notamment des modifications touchant les superficies de MH présents. Ici, alors, et dans un souci de cohérence, les cartes de scénarios futurs (2050) ont été utilisées pour les simulations hydrologiques produites sur la période H3 (future).

Finalement, les indicateurs obtenus par le volet géomatique renseignent de l’état du BV (ou sous sections) et de son aptitude à remplir une fonction à un instant T correspondant à deux modalités d’occupation des sols (axées sur la représentation des MH) : actuelle (2011) et future (2050). Le volet hydrologique intègre ces mêmes modalités d’occupation des sols, leur attribuant les mêmes définitions, à savoir actuelle et future. En revanche, dans le volet hydrologique, vient s’ajouter une composante climatique ou météorologique dynamique définie par les trois horizons H1, H2 et H3. Les indicateurs obtenus par le volet hydrologique renseignent quant à eux sur l’impact effectif des MH dans la dynamique hydrologique du BV (ou sous sections) pour différentes conditions météorologiques. Le choix des périodes est donc justifié et les données sont bien harmonisées entre les deux volets qui leurs accordent les mêmes définitions.

3.4.6. Les scénarios d’occupation des sols

Les scénarios d’occupation de sol à l’horizon 2050, définis à la section 3.2.1.2 Cartographie du territoire, ont subi quelques nuances. Un nouveau tableau a été dressé récapitulant les variations apportées sur les superficies couvertes par les MH intégrées dans le SIG PHYSITEL et prises en compte dans la modélisation hydrologique.

Les résultats relatifs aux taux de variations des indicateurs hydrologiques sont calculés selon l’équation suivante :

\[
IMH_{SC_OCC} = 100 \times \left(\frac{IH_{AMH} - IH_{SMH}}{IH_{SMH,REF}} \right) - IMH_{REF}
\]

(2)

Où \(IMH_{SC_OCC} \) représente l’impact des MH sur la variation d’un IH pour un scénario d’occupation du sol projeté (Op, Pe, SQ, TA) en comparaison avec l’impact des MH sur l’un des indicateurs (\(IMH_{REF} \)) pour le scénario de référence (2011); \(IH_{AMH} \) l’IH local calculé avec la prise en compte des MH; \(IH_{SMH} \) l’IH local calculé sans la prise en compte des MH; \(IH_{SMH,REF} \) l’IH calculé sans la prise en compte des MH pour le scénario d’occupation du sol de référence (2011). À titre de rappel, le paramètre \(IMH_{REF} \) est calculé selon l’équation 1. En d’autres mots, sachant que les MH diminuent les IH de crue, on peut dire que si la valeur de l’équation 2 est positive, cela indique que l’impact des MH du scénario d’occupation du sol est inférieur à l’impact actuel des MH (occupation 2011). À l’inverse, si cette valeur est négative cela signifie que l’impact des MH du scénario d’occupation du sol est plus important que l’impact actuel des MH, tout cela dans un contexte de changements climatiques. Inversement, sachant que les MH augmentent les IH d’étiage, on peut dire qu’une valeur positive indique que l’impact des MH du scénario d’occupation du sol est plus important que l’impact actuel des MH. Alors que si cette valeur est négative, l’impact des MH du scénario d’occupation du sol est moins important que l’impact actuel de ces milieux, toujours dans un contexte de CC.

3.5. Évaluation économique des services écologiques des MH

3.5.1. Méta-analyse

La méthode de transfert de bénéfices basée sur une méta-analyse est effectuée en trois étapes, soit le développement d’une base de données, la méta-régression ainsi que la méthode de transfert de bénéfice. La méthodologie plus détaillée est présenté dans le document : *Utilisation d’une méta-analyse pour le transfert de bénéfices : étude de cas des milieux humides des bassins versants des rivières Yamaska et Bécancour* (Livrable 3A)

3.5.1.1 Développement de la base de données

Pour développer la base de données, deux méta-analyses sur les MH ont inspiré notre démarche. La première étude, publiée en 2006, a été développée par Brander, Florax et Vermaat et la deuxième étude est celle de Ghermandi, van den Bergh, Brander, de Groot et Nunes (2010).

La base de données a été construite par une recherche exhaustive dans la littérature des différentes études qui traitent de l’évaluation économique des MH. De cette recherche, 215
articles de différentes études ont été recueillis, dont 51 études qui ont été sélectionnées pour la méta-analyse. Plusieurs études ont été éliminées, principalement celles dont l’objet n’était pas la VAP, l’estimation était tirée de données secondaires, la qualité de l’article était douteuse ou les informations essentielles pour compléter la banque de données étaient manquantes.

Des variables comportant une composante géomatique ont été ajoutées à la banque de données afin d’en enrichir celle-ci. Ces variables mesurent des caractéristiques des MH étudiés, comme la taille, la classification des MH (terrestre, côtier ou mangrove), le climat du MH étudié (boréal, tempéré, subtropical ou tropical), si le MH est en région, en complexe ou isolé et le pourcentage du territoire dans un rayon de 10 km en quatre composantes, soit en terres agricoles, en terres urbaines, en forêt et hydrographique.

La base de données finale contient ainsi un total de 70 variables et de 106 observations. Les observations proviennent d’un total de 51 études réalisées dans 21 pays différents parmi lesquelles seules trois études n’ont pas été publiées et sont des rapports tirés de la littérature grise. De plus, des précautions ont été prises afin de ne pas avoir une grande quantité d’observations provenant d’une même étude ce qui, finalement, permet d’obtenir une hétérogénéité dans les études ainsi que dans les données.

3.5.1.2 Méta-régression

La variable expliquée est le logarithme de la valeur économique du MH par hectare par année en dollars américains de 2003 à parité de pouvoir d’achat (PPA). Nous avons utilisé les données du « World Penn Table » (Heston et al., 2012) afin de bien considérer les différences dans les pouvoirs d’achat entre les différents pays alors que nous avons utilisé les déflateurs de la Banque mondiale (Banque mondiale, 2012) pour uniformiser les valeurs en données réelles de 2003. Par la suite, des ajustements ont été effectués en fonction de la population considérée dans l’étude.

Les variables explicatives retenues dans le processus de modélisation sont décrites en détail dans le Tableau 8. Elles sont divisées en cinq catégories, soit les services du MH, le type de MH, les caractéristiques géographiques, les caractéristiques socio-économiques et le type d’évaluation. Ainsi, le modèle de base de la méta-régression est spécifié de la façon suivante :

\[\ln Y_i = a + b_{SERV} X_{SERVI} + b_{MH} X_{MHI} + b_{GEO} X_{GEOi} + b_{ECO} X_{ECOi} + b_{Type} X_{Typei} + u_i \]

où la variable dépendante \(Y \) est la valeur en $US 2003 PPA/ha/an, tel que présenté à la section précédente. \(a \) est une constante, \(X_{SERVI} \) est une matrice de variables incluant les quatre services retenus dans notre modélisation (la régulation des débits de crues, la rétention des sédiments, le support d’habitats fauniques pour la biodiversité ainsi que les services reliés aux activités commerciales), \(X_{MHI} \) est une matrice représentant les caractéristiques du MH à savoir s’il est isolé ou en complexe ainsi que s’il a été créé par l’homme, \(X_{GEOi} \) est une matrice représentant les caractéristiques géographiques du MH, \(X_{ECOi} \) est un vecteur avec les données des produit intérieur brut (PIB) par habitant transformés en $US 2003 PPA, \(X_{Typei} \) est une matrice de contrôle avec deux variables dichotomiques associées avec le type de valeurs obtenues, soit si la valeur économique d’un hectare de MH
était marginale ou médiane, ainsi qu’une variable dichotomique associée avec le fait que l’étude a été réalisée à l’aide d’une méthode de préférences exprimées. Enfin, les termes d’erreur u_i représentent les éléments non expliqués dans la modélisation. L’indice i est inscrit pour spécifier les 106 observations de notre banque de données. L’évaluation de la valeur économique des MH a imposé l’ajout d’un BSÉ supplémentaire associé aux services reliés aux activités commerciales afin de mieux cerner les apports ayant un impact sur la valeur économique. L’impact de ce 4rang BSÉ est donc pris en compte dans toutes les analyses spatiales qui utilisent l’indicateur économique, or cet indicateur est présent pour l’évaluation de toutes les fonctions.

Les résultats économétriques obtenus dans le modèle d’estimation retenu sont présentés dans le Tableau 9. L’ensemble des signes des différents coefficients des variables associées aux services des MH sont positifs et significatifs à un seuil de 90 %, excepté la variable « rétention de l’eau ». Concernant les types de MH, nous retrouvons le même résultat que Ghermandi et al. (2010) à l’effet que les MH construits par l’homme ont une valeur plus élevée que les milieux naturels, tel que mentionné précédemment. D’autre part, les MH en complexe ont un coefficient positif et non significatif alors que le coefficient associé aux MH isolés est négatif et non significatif. Concernant les caractéristiques géographiques, le pourcentage de dominance du territoire en terres agricoles a un coefficient négatif et non-significatif et le coefficient associé avec le pourcentage du territoire en terres urbaines est positif et non-significatif. Dans le premier cas, ceci peut s’expliquer par le fait que les MH se révèlent souvent être contraignants pour les agriculteurs et que certains agriculteurs y accordent peu de valeur. Une autre façon d’interpréter ce résultat est que l’existence des activités agricoles fait baisser la valeur des BSE fournis par les MH. En ce qui concerne le pourcentage de dominance du territoire en terres urbaines, il est probable qu’à cause d’une proximité géographique à des milieux urbains ou périurbains les gens tendent à accorder plus de valeur au MH en raison d’un effet de rareté ou d’une possibilité de disparition (voir Ghermandi et al. (2010) pour plus d’explications). Quant à la variable de la taille du MH, son coefficient est négatif et significatif. Ensuite, le coefficient associé à la variable du logarithme du PIB par habitant est positif et significatif. Les biens et services environnementaux s’avèrent donc être des biens normaux ainsi, un revenu plus élevé concorde avec une plus grande volonté à payer pour le bien ou service. De plus, les variables dichotomiques associées avec des caractéristiques de valeurs marginales et de valeurs médianes sont toutes deux positives et significatives. Pour terminer, le coefficient associé avec la variable dichotomique des études de préférences exprimées est positif et non-significatif. Nous avons choisi de garder cette variable, car les préférences exprimées sont des méthodes qui déterminent une valeur économique d’usage et de non-usage aux BSE au contraire des autres types de méthodes qui n’évaluent que la valeur d’usage, ce qui implique une valeur moyenne plus élevée.
Tableau 8 : Descriptif des variables explicatives

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Nom de la variable</th>
<th>Moyenne (écart-type)</th>
<th>Description sommaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services du milieu humide</td>
<td>Biodiversité et habitat</td>
<td>0,72 (0,45)</td>
<td>MH possédant une biodiversité et un habitat naturel particulier.</td>
</tr>
<tr>
<td></td>
<td>Rétention des sédiments (attribut)</td>
<td>0,25 (0,43)</td>
<td>Évaluation de la valeur économique de la rétention de l'eau du MH ou de la VAP pour un changement dans la qualité de l'eau.</td>
</tr>
<tr>
<td></td>
<td>Gestion des crues (attribut)</td>
<td>0,15 (0,36)</td>
<td>Évaluation de la valeur économique du MH liée à son rôle de gestion ou rétention des crues face aux inondations/tempêtes ou de la VAP pour ce service.</td>
</tr>
<tr>
<td></td>
<td>Activités commerciales</td>
<td>0,32 (0,47)</td>
<td>MH permet des activités commerciales qui sont soit la pêche commerciale, la chasse ou l'élevage de canards.</td>
</tr>
<tr>
<td>Type de milieu humide</td>
<td>Créé par l'homme</td>
<td>0,03 (0,17)</td>
<td>MH n'est pas naturel, il est construit par l'homme.</td>
</tr>
<tr>
<td></td>
<td>Isolé</td>
<td>0,03 (0,17)</td>
<td>MH est isolé.</td>
</tr>
<tr>
<td></td>
<td>Complexe</td>
<td>0,44 (0,50)</td>
<td>MH est un complexe.</td>
</tr>
<tr>
<td>Caractéristiques géographiques</td>
<td>Agricole *</td>
<td>45,30 (25,19)</td>
<td>% de dominance du territoire dans un rayon de 10 km autour du MH qui est agricole</td>
</tr>
<tr>
<td></td>
<td>Urbain *</td>
<td>13,61 (11,4)</td>
<td>% de dominance du territoire dans un rayon de 10 km autour du MH qui est urbain</td>
</tr>
<tr>
<td></td>
<td>In taille du milieu humide</td>
<td>8,97 (3,30)</td>
<td>Logarithme des tailles des milieux humides en hectares.</td>
</tr>
<tr>
<td>Caractéristique socio-économique</td>
<td>In PIB par habitant**</td>
<td>9,85 (0,80)</td>
<td>Logarithme du PIB par habitant en $US 2003 PPA.</td>
</tr>
<tr>
<td>Type d'évaluation</td>
<td>Marginal</td>
<td>0,31 (0,47)</td>
<td>Valeur économique du MH a été déterminée à la marge d’un changement.</td>
</tr>
<tr>
<td></td>
<td>Médiane ***</td>
<td>0,03 (0,17)</td>
<td>La valeur économique est une médiane.</td>
</tr>
<tr>
<td></td>
<td>Préférences exprimées</td>
<td>0,79 (0,41)</td>
<td>L'étude est soit une évaluation contingente, soit un choix expérimental.</td>
</tr>
</tbody>
</table>

* Pour les données qui n'étaient pas disponibles, nous avons fait un premier travail en utilisant la moyenne de la colonne.
** Déterminée au niveau national excepté pour les études canadiennes et américaines où la valeur est déterminée par province ou État.
*** 50% des répondants ont répondu une valeur plus basse et 50% des répondants ont répondu une valeur plus élevée que la médiane.
Tableau 9 : Résultats du modèle économétrique de méta-régression

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Variables</th>
<th>Coeff.</th>
<th>Écart-type</th>
<th>Valeur-p</th>
<th>Intervalle de confiance à 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Services du milieu</td>
<td>Biodiversité et habitat</td>
<td>1,584</td>
<td>0,920</td>
<td>0,089</td>
<td>-0,243 - 3,411</td>
</tr>
<tr>
<td>humide (ou fonctions)</td>
<td>Filtration de l’eau (attribut)</td>
<td>0,893</td>
<td>0,649</td>
<td>0,173</td>
<td>-0,397 - 2,182</td>
</tr>
<tr>
<td>((x_{SERV}))</td>
<td>Gestion des crues (attribut)</td>
<td>1,485</td>
<td>0,873</td>
<td>0,092</td>
<td>-0,249 - 3,219</td>
</tr>
<tr>
<td></td>
<td>Activités commerciales</td>
<td>1,899</td>
<td>0,696</td>
<td>0,008</td>
<td>0,516 - 3,281</td>
</tr>
<tr>
<td>Type de milieu humide ((x_{MH}))</td>
<td>Créé par l’homme</td>
<td>2,505</td>
<td>1,069</td>
<td>0,021</td>
<td>0,382 - 4,628</td>
</tr>
<tr>
<td></td>
<td>Isolé</td>
<td>0,856</td>
<td>1,658</td>
<td>0,615</td>
<td>-4,222 - 2,516</td>
</tr>
<tr>
<td></td>
<td>Complexe</td>
<td>0,858</td>
<td>0,579</td>
<td>0,138</td>
<td>-0,283 - 2,019</td>
</tr>
<tr>
<td>Caractéristiques géographiques</td>
<td>Agricole</td>
<td>-0,019</td>
<td>0,012</td>
<td>0,118</td>
<td>-0,043 - 0,005</td>
</tr>
<tr>
<td></td>
<td>Urbain</td>
<td>0,007</td>
<td>0,025</td>
<td>0,788</td>
<td>-0,042 - 0,056</td>
</tr>
<tr>
<td>((x_{GEO}))</td>
<td>In taille du milieu humide</td>
<td>-0,560</td>
<td>0,070</td>
<td>0,000</td>
<td>-0,699 - 0,420</td>
</tr>
<tr>
<td>Caractéristique socio-économique ((x_{ECO}))</td>
<td>In PIB par habitant</td>
<td>1,291</td>
<td>0,544</td>
<td>0,020</td>
<td>0,210 - 2,372</td>
</tr>
<tr>
<td>Type d’évaluation</td>
<td>Marginal</td>
<td>1,484</td>
<td>0,529</td>
<td>0,006</td>
<td>0,432 - 2,535</td>
</tr>
<tr>
<td>((x_{Type}))</td>
<td>Médiane</td>
<td>3,004</td>
<td>1,252</td>
<td>0,018</td>
<td>0,518 - 5,490</td>
</tr>
<tr>
<td></td>
<td>Préférences exprimées</td>
<td>1,087</td>
<td>0,845</td>
<td>0,202</td>
<td>-0,592 - 2,766</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>-3,668</td>
<td>5,312</td>
<td>0,492</td>
<td>-14,219 - 6,884</td>
</tr>
</tbody>
</table>

| Nombre d’observations | 106 | | | | |
| \(R^2\) | 0,531 | | | | |

3.5.1.3. Transfert de bénéfices à l’aide de la méta-analyse

La réalisation de la méta-analyse permet d’identifier et de déterminer dans quelle ampleur certaines caractéristiques des MH influencent la valeur économique des BSE produits par ceux-ci. Une fois le modèle de méta-analyse développé, il est par la suite possible de réaliser des transferts de bénéfices à partir des paramètres estimés dans la méta-régression ainsi que des caractéristiques particulières des BV de la rivière Yamaska et de la rivière Bécancour. Pour la réalisation du transfert de bénéfices, il est nécessaire de passer d’une forme logarithmique (équation 4) à une forme non logarithmique (équation 5 et 6).

\[
\ln Y_i = a + b_{SERV}X_{SERVI} + b_{MH}X_{MHI} + b_{GEO}X_{GEOI} + b_{ECO}X_{ECOI} + b_{Type}X_{Typei}
\] \(\text{(4)}\)

Pour enlever le logarithme, nous devons prendre l’exposant du membre de gauche ainsi que l’exposant du membre de droite (équation 5).

\[
\exp(\ln Y_i) = \exp(a + b_{SERV}X_{SERVI} + b_{MH}X_{MHI} + b_{GEO}X_{GEOI} + b_{ECO}X_{ECOI} + b_{Type}X_{Typei})
\] \(\text{(5)}\)

Ce qui revient à mentionner que :

\[
Y_i = \exp(a) \times \exp(b_{SERV}X_{SERVI}) \times \exp(b_{MH}X_{MHI}) \times \exp(b_{GEO}X_{GEOI}) \times \exp(b_{ECO}X_{ECOI}) \times \exp(b_{Type}X_{Typei})
\] \(\text{(6)}\)
À l'aide de l'équation 6, il est ainsi possible de débuter le travail de transferts de bénéfices. La façon de procéder est de remplacer les valeurs de X par les valeurs associées aux deux BV étudiés afin de trouver une valeur Y, soit la valeur économique des MH par hectare. Cette démarche est utilisée pour déterminer la valeur de chacune des variables X.

Tout d’abord les valeurs des X_{SERVl} à 1 sont imposés en ce qui concerne la rétention des sédiments, la régulation des débits de crues et le support d’habitats fauniques pour la biodiversité, ce qui signifie que la valeur potentielle des milieux humides de la Yamaska et de la Bécancour est considérée dans cette étude avec l’existence de ces caractéristiques. La valeur ainsi obtenue illustre en effet le coût d’opportunité à assumer dans le cas de disparition des MH ou la valeur économique maximale à atteindre dans le cas d’amélioration.

Considérons que les MH des BV de la Yamaska et de la Bécancour ne présentent pas d’activités commerciales (pêche commerciale, chasse commerciale, élevage de canards commercial), ainsi la variable des activités commerciales est fixée à 0. En ce qui concerne les types de MH (X_{MHl}), aucun n’a été construit par l’Homme dans les deux cas étudiés, ce qui confère à la variable MH créée par l’Homme la valeur de 0. D’autre part, les pourcentages de MH isolés et le pourcentage de MH en complexe sur le nombre total de MH ont été réalisés à trois niveaux, soit au niveau agrégé du bassin versant ainsi qu’aux niveaux désagrégés des SB et des MB. Les caractéristiques géographiques X_{GEOl}, soit le pourcentage de dominance du territoire en terres agricoles et urbaines qui ont été exprimées selon les trois niveaux d’échelles présentées ci-haut, ainsi que la taille des MH. Pour ce qui est de cette dernière variable, dans les trois cas étudiés, la taille totale en MH du bassin versant a été utilisée. La variable $X_{ÉCOl}$, soit le PIB par habitant, est définie sur la base des régions des deux BV. Pour terminer, la matrice X_{Typel}, qui est composée des trois variables dichotomiques représentant le fait que la valeur économique est une valeur marginale, une valeur médiane ou bien provient d’une étude de préférences exprimées, a été utilisée de différentes façons en fonction des paramètres de comparabilité souhaités.

Comme on peut le constater dans l’équation 6, la valeur totale est dépendante des autres valeurs. Ainsi, puisque les différentes caractéristiques vont toutes être multipliées, c’est le cumul des différentes forces à l’œuvre qui permettra d’obtenir une valeur finale à l’hectare. Ceci est illustré dans les tableaux 14 et 15 (section 4.3.1)

3.5.2. Étude contingente

L’objet de l’étude contingente est de mesurer la valeur sociale que la population québécoise accorde aux services écologiques fournis par les MH des zones habitées du Québec. Quatre attributs sont ici valorisés : la biodiversité, la régulation des crues, la qualité de l’eau et la séquestration de carbone. Pour réaliser cette valorisation, une enquête via internet sera accomplie. L’outil utilisé est un questionnaire anonyme. Ce questionnaire collecte des informations socio-économiques sur les répondants, sur leurs connaissances des milieux humides et leur attitude envers l’environnement, ainsi que des réponses sur leur volonté à payer pour les attributs associés aux milieux humides. Il y a deux versions au questionnaire utilisé. Un répondant ne pourra remplir qu’une seule version. La différence entre les deux versions concerne la méthodologie utilisée pour obtenir la volonté à payer des répondants. Dans la moitié des questionnaires distribués, la méthodologie utilisée est celle de l’évaluation contingente. Dans l’autre moitié, la méthodologie est celle des choix expérimentaux. Par le biais d’un questionnaire en ligne, une estimation de 1200 sujets seront recrutés de façon
aléatoire, dont 800 dans la population générale du Québec et 400 dans la population de la région Montérégie et Chaudière-Appalaches.

Chaque questionnaire comporte quatre volets. Le premier volet, nommé INTRODUCTION, permettra d’expliquer ce qu’est un milieu humide et de présenter la situation actuelle au Québec. Ce premier volet permettra aux sujets recrutés d’être pleinement informés de la situation. Le second volet nommé VOTRE OPINION SUR L’ENVIRONNEMENT visera à déterminer la relation qu’entretient le répondant avec les problématiques environnementales et en particulier les milieux humides. Le troisième volet nommé LE FUTUR DES MILIEUX HUMIDES est un volet dans lequel la méthode de l’évaluation contingente (métode 1) et la méthode des choix expérimentaux (méthode 2) seront utilisées pour évaluer la volonté à payer des Québécois pour améliorer la situation des milieux humides au Québec. Dans chacune des méthodes, on présentera les différents attributs des milieux humides qui sont valorisés, par contre la question de volonté à payer pour ces attributs sera différente. Dans la question basée sur la méthode de l’évaluation contingente, une simple question dichotomique sur la volonté à payer sera posée pour évaluer la valeur globale d’une restauration des milieux humides alors que dans la méthode des choix expérimentaux, plusieurs choix de scénarios avec différentes valeurs aux attributs seront proposés aux répondants; une série de cinq choix de scénarios sera proposée. Dans le quatrième et dernier volet nommé VOTRE PROFIL, il sera posé des questions d’ordre démographique et socioéconomique visant à établir le profil des sujets de façon à mieux déterminer les facteurs influant sur la formation de la volonté à payer.

Les deux méthodes d’évaluation proposées estiment toutes les composantes de la valeur économique totale, y compris les valeurs d’usage indirectes (passives) et les valeurs de non-usages.

Pour plus de détails sur les méthodologies (questionnaires, méthodes d’échantillonnages, question de volonté à payer, etc.) et les statistiques descriptives des données (sociodémographiques, revenu, attitudes environnementales, réponses des questions d’évaluation, etc.) recueillies, veuillez référer au document: _La valeur de milieux humides au Québec : Une étude qui compare la méthode d’évaluation contingente et la méthode des choix multi-attributs_ (livrable 3B).

3.6. Cartographie des biens et services écologiques à l’aide d’indicateurs spatiaux

Le développement d’outils d’analyses spatiales pour l’évaluation des services écologiques rendus par les MH a été effectué par la cartographie des indicateurs d’une fonction et l’harmonisation des indicateurs économiques qui permet d’établir par la suite un outil d’aide à la décision pour l’intervention durable. La méthodologie détaillée est présenté dans le document: _un outil d’aide à la décision pour la gestion des milieux humides: cartographie des biens et services écologiques à l’aide d’indicateurs spatiaux_ (Livrable 4BC).

3.6.1. Mise en place d’indicateurs spatiaux

Les indicateurs spatiaux sont choisis pour représenter les trois volets du développement durable (DD), soient écologique, économique et socioculturel (De Groot et al., 2002). Il s’agit donc de représenter ces indicateurs en les cartographiant et en utilisant des indices spatiaux afin d’évaluer l’efficacité de la fonction écologique. Les procédures pour cartographier les
Les indicateurs ont été sélectionnés à partir de plusieurs critères : (1) applicabilité aux BTSL, (2) support par la littérature, (3) définition spatiale, (4) mesurable par un SIG avec les données disponibles, (5) degré d’interprétation possible, (6) significatif pour la fonction et (7) exclusivité de la mesure entre types d’indicateur d’une même fonction (Cedfeldt et al., 2000; Li et al., 2005). Plusieurs ont été éliminés, car ils ne donnaient pas un gradient de valeurs intéressant ou la donnée n’était pas disponible pour 1984. Chaque indicateur sélectionné est utilisé selon sa fonction écologique associée (Tableau 10). L’ensemble des indicateurs est décrit dans annexe 2. Les indicateurs économiques ont été sélectionnés selon l’évaluation des coûts des BSÉ rendu par les MH (section 4.3).
Tableau 10 : Exemples d'indicateurs écologiques et sociaux du développement durable pour les trois fonctions écologiques des MH (les indicateurs en gras ont été retenus pour l’analyse). L’indicateur économique a été développé dans l’analyse du volet économique et est appliqué pour toute analyse de fonction.

<table>
<thead>
<tr>
<th>Code d'indicateur</th>
<th>Indicateur</th>
<th>Indice spatial</th>
<th>Développement durable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction du support d'habitats fauniques (fonction 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Connectivité entre MH</td>
<td>Proximité des parcelles</td>
<td>Écol</td>
</tr>
<tr>
<td>2</td>
<td>Fragmentation de l'habitat (forme)</td>
<td>Circularité (Miller)</td>
<td>Écol</td>
</tr>
<tr>
<td>3</td>
<td>Degré de connectivité hydrique</td>
<td>Densité du réseau hydrologique</td>
<td>Écol</td>
</tr>
<tr>
<td>4</td>
<td>Barrière anthropique</td>
<td>Densité du bâti</td>
<td>Écol</td>
</tr>
<tr>
<td>5</td>
<td>Hétérogénéité naturelle</td>
<td>Diversité de Shannon</td>
<td>Social</td>
</tr>
<tr>
<td>6</td>
<td>Préférence visuelle naturelle</td>
<td>Densité forestière</td>
<td>Social</td>
</tr>
<tr>
<td>Fonction de la régulation des débits de crues (fonction 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Superficie du MH</td>
<td>Taille du MH</td>
<td>Écol</td>
</tr>
<tr>
<td>2</td>
<td>Désynchronisation naturelle</td>
<td>Densité forestière et végétale</td>
<td>Écol</td>
</tr>
<tr>
<td>3</td>
<td>Vitesse d’écoulement</td>
<td>Pente du MH</td>
<td>Écol</td>
</tr>
<tr>
<td>4</td>
<td>Position</td>
<td>Altitude du MH</td>
<td>Social</td>
</tr>
<tr>
<td>5</td>
<td>Proximité des communautés</td>
<td>Proximité du bâti</td>
<td>Social</td>
</tr>
<tr>
<td>Fonction de la rétention des sédiments (fonction 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Végétalisation</td>
<td>Densité forestière</td>
<td>Écol</td>
</tr>
<tr>
<td>2</td>
<td>Complexité des MH</td>
<td>Indice de Moran</td>
<td>Écol</td>
</tr>
<tr>
<td>3</td>
<td>Élongation du milieu</td>
<td>Forme irrégulière (Miller)</td>
<td>Écol</td>
</tr>
<tr>
<td>4</td>
<td>Connectivité hydrologique</td>
<td>Proximité de l'eau</td>
<td>Social</td>
</tr>
<tr>
<td>5</td>
<td>Proximité des communautés</td>
<td>Proximité du bâti</td>
<td>Social</td>
</tr>
</tbody>
</table>

Une fois l’éventail de valeurs obtenues, les seuils critiques sont fixés par une classification et par la suite, il est nécessaire de normaliser celles-ci pour permettre la combinaison des indicateurs. La démarche utilisée est une classification par quantiles (5 classes) qui permet de faire des comparaisons relatives entre SB et MB. En conservant les valeurs de brin des classes, une comparaison temporelle des bassins est possible puisque les valeurs serviront à normaliser les indices appliqués sur les données de 1984 et des scénarios.

La normalisation amène les seuils des indicateurs aux mêmes valeurs, soit -1 pour les SB ou MB ayant les MH les moins efficaces; près de 0 pour les MH ayant une efficacité normale; et 1 pour les MH les plus performants (Smith *et al.*, 1995; Posthumus *et al.*, 2010; Willemen *et al.*, 2010). La normalisation permet par la suite de grouper les indicateurs par fonction en obtenant un indicateur de fonction (IF). La formule de Gimona et van der Horst (2007) est utilisée pour normaliser les valeurs entre chaque classe (équation 7).

\[
\frac{(x - \min_{ancien}) \times (\max_{nouv} - \min_{nouv})}{\max_{ancien} \times \min_{ancien}} + \min_{nouv}
\]

(7)

où x : valeur brute de l’indice; \(\max_{nouv} = -0.6, -0.2, 0.2, 0.6\) ou 1 (selon la classe); \(\min_{nouv} = -1, -0.6, -0.2, 0.2\) ou 0.6 (selon la classe); \(\max_{ancien}\) : valeur brute maximale de la classe; et \(\min_{ancien}\) : valeur brute minimale de la classe.
Tous les indices ont été testés afin d’affiner le choix et de corriger certains paramètres en faisant l’objet d’une analyse de sensibilité (AS). L’AS permet d’évaluer la stabilité et la robustesse du modèle tout en déterminant jusqu’à quel point le modèle peut être simplifié pour éliminer la redondance (Field, 2000). Les paramètres des indices sont très importants à définir, car ils influencent grandement les résultats obtenus. Par exemple, l’indice de la densité urbaine prend en compte la superficie du bâti dans une zone tampon autour des MH. Il est intéressant de voir si les résultats changent lorsqu’on prend en compte la taille du MH ou la taille de la zone tampon. La première étape de l’AS consiste à évaluer les paramètres à l’aide d’un indicateur de sensibilité (IS) (équation 8) pour évaluer le degré de sensibilité de l’indice (I) choisi par rapport aux sorties générées (IF) (Duchemin et Lachance, 2002).

\[IS = \frac{IF_{\text{max}} - IF_{\text{min}}}{IF_{\text{moy}}} \times \frac{I_{\text{moy}}}{I_{\text{max}} - I_{\text{min}}} \]

Plus IS est grand, plus l’IF est sensible à ce paramètre, ce qui permet de définir les paramètres finaux à utiliser pour les indicateurs. La deuxième étape de l’AS comprend une analyse de variance par composantes principales (ACP). Elle consiste à observer les corrélations entre indicateurs et les corrélations partielles, ce qui aide à faire le choix final des indicateurs à conserver. Les indicateurs devraient avoir une forte corrélation avec l’IF pour avoir un certain poids dans la combinaison. Ensuite, la corrélation entre indicateurs devrait être minimale, car on ne veut pas que deux indicateurs donnent la même information (Field, 2000). L’ACP permet d’observer la part que chaque indicateur prend dans l’une des deux composantes établies. En ayant une idée plus précise de la variance de l’IF attribuée à chaque indicateur, cela nous permet de conserver ceux qui expliquent le plus le résultat final. Cet appui permettra d’établir si les indicateurs donnent une information différente ou complémentaire entre eux (Saisana et al., 2005). On peut utiliser une ACP afin de voir les combinaisons possibles qui représentent les facteurs importants de la variance totale. Les indicateurs regroupés dans les composantes ayant les plus forts pourcentages de variance expliquée et ayant les plus faibles orthogonalités pourront être conservés. Le Tableau 10 montre les indicateurs qui ont été sélectionnés (en gras) pour construire l’outil.

La cartographie des indicateurs spatiaux permet d’obtenir la distribution spatiale de leurs valeurs. Les cartes finales doivent être adaptées aux intervenants ou au niveau d’intervention (Mitsch et Gosselink, 2000) à partir duquel se prendront les décisions. La cartographie nécessite donc une sémiologie simple et conviviale. Ensuite, pour l’approche multichelle, le passage d’un niveau plus fin à un niveau plus grossier implique une généralisation des valeurs des indices spatiaux. Enfin, une synthèse de ces indicateurs est représentée par un IF.

3.6.2. Outil d’aide à la décision pour la gestion des milieux humides

Un outil d’aide à la décision permettant l’intervention ciblée selon les principes durables est possible en prenant en compte les trois sphères du DD (Joly et al., 2008). Dans cette étude, l’outil d’aide à la décision est basé sur la combinaison des indicateurs spatiaux d’une même fonction associée aux MH. Cette combinaison d’indices renseigne sur la situation des fonctions écologiques des MH selon une approche de durabilité. La dernière étape démontre les procédures menant à l’élaboration d’un outil d’aide à l’intervention pour la gestion des MH et de leur environnement.
Chaque fonction écologique est associée à plusieurs indicateurs spatiaux ayant tous des valeurs normalisées. En combinant ces indicateurs spatiaux (équation 9), cela permet d’obtenir un IF qui peut être interprété comme une valeur représentant l’efficacité d’une fonction en termes écologique, économique et socioculturel. Parallèlement, une fonction peut être représentée par un diagramme-radar (de Kiviat) (Foley et al., 2005) où chaque axe correspond à un indicateur spatial (Bernier, 2012). Les valeurs normalisées des indicateurs peuvent être reliées entre elles, ce qui permet de créer une surface où l’aire résultante représente le degré de durabilité des MH à l’intérieur de ce SB.

\[IF = \sum_{i=1}^{n} N_i \cdot p_i \]

\(i \in [1,n] \quad IF : \) Indicateur de fonction \(N : \) Valeur de l’indicateur spatial \(p : \) Poids des indicateurs

L’analyse de changement est un exercice important pour établir des constats globaux sur l’état de la fonction écologique et son évolution dans le temps. Certains indicateurs évidents ressortiront comme ayant un lien direct avec l’amélioration, la constance ou la détérioration du MH. En faisant un bilan des changements à partir de différents scénarios pertinents, on pourra cibler les zones les plus critiques et qui nécessitent une intervention humaine. Les efforts doivent donc être mis sur la conservation, la restauration et l’utilisation durable de l’écosystème qui génèrent de nombreux bénéfices (De Groot et al., 2010). En somme, l’outil d’aide à la décision est une approche qui permet d’assister les gestionnaires des ressources naturelles et du territoire pour intégrer les diverses valeurs (Greene et al., 2010).
4. Résultats

4.1. Caractérisation des marécages

Une RDA a révélé un patron clair distinguant les assemblages d’espèces des marécages isolés de ceux des marécages riverains (Figure 7). En effet, les sites de ces deux types de marécages avaient des positions divergentes le long de l’axe 1, bien que la variation expliquée par cet axe était assez faible (6,7 %) dû au très grand nombre d’espèces impliquées. Par contre, 24 % de la variation totale a pu être expliquée par 20 variables environnementales. Celles étant le plus associées au patron séparant les sites isolés de riverains étaient surtout des variables du sol et de l’occupation du territoire (Figure 8). Sur la Figure 8, seules les plus grandes flèches, c’est à dire celles qui expliquaient le mieux l’axe 1 ont été conservées (longueur de flèche d’au moins 70 % de la longueur de la flèche maximale). Trois variables semblaient influencer positivement la végétation des marécages isolés, soit la présence de forêt dans un rayon d’un 1 km, le mauvais drainage et la présence d’étangs vernaux. Pour les sites riverains, c’est la présence de terres agricoles et d’espaces urbains dans une zone tampon de 1 km, l’augmentation de l’épaisseur de l’horizon B du sol et l’augmentation de la profondeur à laquelle les mouchetures se trouvaient dans le sol qui influençaient la végétation. Une analyse de partitionnement de la variance a révélé que les trois catégories de variables, soit celles de sol, de microtopographie et d’occupation du territoire avaient un pouvoir explicatif semblable (Figure 9). Il reste que peu de variation pouvait être expliquée uniquement par chaque catégorie de variables : 2 % pour le sol, 4 % pour la microtopographie et 5 % pour l’occupation du territoire.

Figure 7 : Répartition des marécages riverains et isolés selon une analyse canonique de redondance de leurs communautés végétales. Deux facteurs ont servi à contraindre les axes : type de marécage (riverains ou isolés) et province naturelle (Appalaches, BTSL)
Figure 8 : Influence des variables environnementales sur la végétation des marécages selon une analyse canonique de redondance. Les ellipses représentent la répartition des marécages selon quatre types; rouge : marécages isolés dans les Appalaches; orange : marécages isolés dans les BTSL; bleu foncé : marécages riverains dans les Appalaches; bleu pâle : marécages riverains dans les BTSL. Les six variables expliquant le plus la végétation ont été conservées sur le graphique (Critère= minimum de 70% de la longueur de la plus grande de flèche). Voir Annexe 3 pour une description des autres variables de l’analyse. Pour une meilleure représentation des sites, le contour des ellipses englobe 80 % des sites.

Figure 9 : Partitionnement de la variation pour expliquer la végétation des marécages. Les variables pour chaque groupe sont identifiées à l’Annexe 3:
Cinq strates de végétation étaient influencées par le caractère isolé ou riverain des marécages (Figure 10). Les bryophytes et les éricacées étaient respectivement 1,9 et 5,5 fois plus abondantes dans les marécages isolés que riverains alors que les ptéridophytes, principalement des fougères, étaient 1,3 fois plus abondantes dans les marécages riverains. Ces derniers abritaient aussi 1,4 fois plus d’arbustes et la strate arborescente inférieure y était légèrement plus dense. Par contre, aucune différence dans la richesse et la diversité globale n’était perceptible entre les deux types de marécages (Figure 11).

Figure 10 : Recouvrement moyen par classe pour chaque strate végétale dans les marécages isolés et riverains (Différences significatives entre les types de marécages par strate: 0,001=***, 0,01=**, 0,05=*)

Figure 11 : Richesse et diversité végétale moyenne dans les marécages isolés et riverains
Les indices IndVal ont été calculés en deux temps. Tout d'abord, les sites ont été divisés en deux groupes, soit les marécages isolés et riverains. Sur la Figure 12, les espèces indicatrices de ces groupes ont la colonne de fréquence colorée de gris. Par la suite, la méthode a été appliquée aux mêmes sites maintenant divisés en quatre groupes, intégrant à la fois le type de connexion hydrologique (isolé ou riverain) et la province naturelle (Appalaches ou BTSL). Une espèce indicatrice d’un de ces quatre groupes est représentée sur la Figure 11 par une barre de fréquence hachurée. Comme les groupes utilisés pour les deux calculs des IndVal s’imbriquent les uns dans les autres, une espèce peut être à la fois indicatrice des milieux riverains (1er calcul des IndVal), mais aussi indicatrice du groupe des marécages riverains dans les Appalaches (2ème calcul des IndVal). La barre de fréquence de cette espèce est donc grise et hachurée pour montrer qu’elle ressort indicatrice pour les deux calculs des IndVal.

Plusieurs espèces étant indicatrices pour les deux types de groupes, peu d’entre elles possèdent une barre de fréquence blanche hachurée. La Figure 12 montre que la strate arborée des marécages isolés des Appalaches était caractérisée par Abies balsamea, Betula alleghaniensis et Thuja occidentalis. Acer rubrum y était aussi fréquent, mais moins que dans les marécages isolés des BTSL où il est indicateur. Ulmus americana est une espèce indicatrice des marécages riverains peu importe la province naturelle. De plus, on trouvait Acer negundo et Acer saccharum plus spécifiquement dans les marécages riverains des BTSL. Les espèces d’arbustes de cette figure montraient généralement des fréquences et des abondances plus élevées dans les marécages isolés des BTSL que dans les marécages isolés des Appalaches. Ilex verticillata, Spiraea latifolia et Viburnum nudum sont indicatrices du groupe «isolés des BTSL». Les aulnaies, des marécages arbustifs dominés par Alnus incana étaient très fréquents et abondants pour les types riverains dans les Appalaches. Ribes sp. caractérisait plutôt les marécages riverains des BTSL. Les espèces de pteridophytes les plus fréquentes des marécages isolés étaient, Dryopteris cristata, Equisetum sylvaticum et Osmundastrum cinnamomeum, la dernière étant indicatrice des marécages isolés des Appalaches. Dans les marécages riverains, les espèces indicatrices sont Matteuccia struthiopteris et Athyrium filix-femina, la première étant plus fidèle et spécifique aux riverains des BTSL. La strate des herbes était certainement la plus diversifiée, mais peu d’espèces avaient un couvert important, soit sous le seuil de 1 % pour la plupart d’entre elles. Pour les marécages isolés, Carex trisperma et Oxalis montana sont indicatrices dans les Appalaches et Coptis groenlandica, Maianthemum canadense, Trientalis borealis et Clintonia borealis le sont dans les BTSL. Dans les milieux riverains, Arisaema triphyllum était très fréquente, mais peu abondante, quoi qu’indicatrice pour ce milieu. Les espèces indicatrices des milieux riverains des Appalaches sont Doellingeria umbellata, Erigeron philadelphicus, Ranunculus sp. et Thalictrum pubescens tandis qu’une seule espèce, Circaea canadensis, l’est pour milieux riverains des BTSL. Les bryophytes étaient présentes dans tous les types de marécages, mais leurs fréquences et abondances variaient beaucoup. Ce sont dans les milieux isolés que les sphaignes et les autres bryophytes ressortent comme indicatrices, les sphaignes étant associées plus spécifiquement aux BTSL et les autres bryophytes aux Appalaches. Dans les milieux riverains les sphaignes étaient pratiquement absentes et les mousses étaient très fréquentes, mais peu abondantes.
Figure 12 : Fréquence (barre d'histogramme) et couvert (point) des espèces indicatrices (IndVal) pour chaque type de marécage. Les barres grises indiquent qu'une espèce est indicatrice du type général riverain ou isolé. Les barres hachurées indiquent pour chaque type (riverain ou isolé) si l'espèce est indicatrice des Appalaches ou des basses-terres du Saint-Laurent.
4.2. Modélisation hydrologique

Tout comme pour la section 3.4, seule une partie des résultats est présentée dans ce document. Les informations ainsi reportées sont celles directement liées aux MH et illustrent les principaux résultats concernant : (i) la prise en compte des MH dans l’outil de modélisation (livrable 2A), (ii) le rôle des MH en climat actuel (livrable 2B) et (iii) le rôle des MH en CC (livrable 2C). La description complète des résultats est disponible dans le rapport détaillé : Modélisation hydrologique des milieux humides dans les basses-terres du Saint-Laurent (Livrable 2A, 2B ou 2C). Toute partie ayant des compléments d’informations dans le rapport détaillé sera annotée comme telle.

4.2.1. Intégration des BV au SIG PHYSITEL

La discrétisation du BV de la Bécancour aboutit à l’obtention de 1813 UHRH d’une superficie moyenne de 140 ha. Pour le BV de la Yamaska, ce sont 1299 UHRH d’une superficie moyenne de 370 ha qui ont été obtenus. Ces segmentations assurent pour les deux BV une représentation satisfaisante de l’hétérogénéité spatiale et permettront d’effectuer des simulations hydrologiques dans un délai raisonnable. À noter que les cartes d’occupation des sols utilisées pour le projet de modélisation sont issues des mêmes sources que celles citées à la section 3.2.1.2, mais diffèrent de par leur niveau de classification d’occupation avec une distinction de la classe « forêt » en trois sous-classes (feuillus, mixte et résineux). Les cartes illustrant la segmentation des BV en UHRH et les cartes d’occupation ainsi que les tableaux descriptifs associés sont reportés dans le rapport détaillé : Modélisation hydrologique des milieux humides dans les basses-terres du Saint-Laurent (Livrable 2A).

L’identification spécifique des MH isolés et riverains par le SIG PHYSITEL ainsi que celle des aires drainées par ces derniers est illustrée par les Figure 13 et Figure 14.

Figure 13 : Carte des MH et de leurs aires drainées sur le BV Bécancour
Figure 14 : Carte des MH et de leurs aires drainées sur le BV Yamaska
Le Tableau 11 présente un descriptif des couvertures et des aires drainées pour les MH isolés et riverains pour chacun des deux BV (G) ainsi que pour chacun des secteurs théoriques (AV, MED, AM) définis à la section 3.4.3 *Calage et validation du modèle hydrologique HYDROTEL*.

Tableau 11 : Couverture et aires drainées par les MH isolés et riverains sur les BV

<table>
<thead>
<tr>
<th>Caractéristique du bassin et des milieux humides</th>
<th>Bécancour</th>
<th>Yamaska</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G</td>
<td>AV</td>
</tr>
<tr>
<td>Superficie totale du BV (km²)</td>
<td>2597</td>
<td>346</td>
</tr>
<tr>
<td>Superficie totale des MH (km²)</td>
<td>307</td>
<td>38</td>
</tr>
<tr>
<td>Superficie occupée par les MH (%)</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Superficie totale des MH isolés (ha)</td>
<td>210</td>
<td>30</td>
</tr>
<tr>
<td>Superficie des MH isolés (%)</td>
<td>68</td>
<td>80</td>
</tr>
<tr>
<td>Superficie du BV occupée par les MH isolés (%)</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Superficie totale des MH riverains (ha)</td>
<td>97</td>
<td>7</td>
</tr>
<tr>
<td>Superficie des MH riverains (%)</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>Superficie du BV occupée par les MH riverains (%)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Superficie totale drainée par les MH (ha)</td>
<td>754</td>
<td>76</td>
</tr>
<tr>
<td>Superficie du BV drainée par les MH (%)</td>
<td>29</td>
<td>22</td>
</tr>
<tr>
<td>Superficie totale drainée par les MH isolés (ha)</td>
<td>464</td>
<td>57</td>
</tr>
<tr>
<td>Superficie du BV drainée par les MH isolés (%)</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Superficie totale drainée par les MH riverains (ha)*</td>
<td>330</td>
<td>24</td>
</tr>
<tr>
<td>Superficie du BV drainée par les MH riverains (%)</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Superficie totale occupée ou drainée par les MH (ha)</td>
<td>1061</td>
<td>114</td>
</tr>
<tr>
<td>Superficie du BV occupée ou drainée par les MH (%)</td>
<td>41</td>
<td>33</td>
</tr>
</tbody>
</table>

*Nouveau que la superficie drainée par les MH riverains peut inclure des MH isolés et leurs aires drainées respectives

Ces résultats démontrent clairement que le bassin de la Bécancour présente un nombre plus important de MH isolés que riverains. Le pourcentage d’occupation des MH sur le territoire de la Bécancour (12%) est trois fois supérieur à celui de la Yamaska (4%). Cependant, la superficie totale drainée par ces milieux est seulement deux fois supérieure (29%) à celle de la Yamaska (13%). Notons également une répartition plus homogène des MH sur l’ensemble du territoire de la Yamaska en comparaison de celle observée sur la Bécancour.
4.2.2. Intégration des BV au modèle hydrologique HYDROTEL

- Intégration des BV

Pour le projet, trois stations hydrométriques (Tableau 12) présentes sur les bassins ont été sélectionnées afin d’évaluer cette performance. L’emplacement de ces stations s’harmonise avec la délimitation des BV selon les trois secteurs relativement homogènes selon l’occupation de sol, la topographie, le type de sol, définis aux sections 3.4.3 Calage et validation du modèle hydrologique HYDROTEL.

Tableau 12 : Stations hydrométriques associées aux simulations hydrologiques sur les BV Bécancour et Yamaska

<table>
<thead>
<tr>
<th>Stations hydrométriques</th>
<th># de la station</th>
<th>Localisation et état</th>
<th>Tronçon associé dans HYDROTEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bécancour</td>
<td>024007</td>
<td>Au pont-route près de Saint-Sylvere (1970 à 2001)</td>
<td>TR-70</td>
</tr>
<tr>
<td>Bécancour</td>
<td>024014</td>
<td>À 6 km en aval du pont de l’autoroute 20 à Madington (1999 à aujourd’hui)</td>
<td>TR-102</td>
</tr>
<tr>
<td>Bécancour</td>
<td>024003</td>
<td>À 2.1 km en amont de la rivière Palmer (1966 à aujourd’hui)</td>
<td>TR-255</td>
</tr>
<tr>
<td>Yamaska</td>
<td>030345</td>
<td>À 1.8 km en aval du barrage à Sainte-Hyacinthe (1994 à aujourd’hui)</td>
<td>TR-61</td>
</tr>
<tr>
<td>Yamaska</td>
<td>030304</td>
<td>À 7.6 km de la Yamaska (1965 à aujourd’hui)</td>
<td>TR-63</td>
</tr>
<tr>
<td>Yamaska (Noire)</td>
<td>030302</td>
<td>À 0.6 km en amont du pont-route de la 235 à Farnham (1965 à aujourd’hui)</td>
<td>TR-240</td>
</tr>
</tbody>
</table>

- Calage et validation du modèle hydrologique

Dans le cadre du développement du modèle HYDROTEL pour le projet, le calage vise essentiellement à simuler les débits observés en tenant compte de la présence des MH. Dans ce contexte, le calage du modèle doit mettre l’accent sur le synchronisme et l’amplitude entre les phénomènes de crues et d’étiages observés et simulés. Les trois secteurs délimités sur chacun des BV ont permis d’obtenir des paramètres de calage plus réalistes et permettront des analyses ultérieures rendant mieux compte de l’impact de la spatialisation des MH sur les BV sur la réponse hydrologique.

Les figures illustrant les résultats de calage et de validation des débits aux trois tronçons définis au Tableau 13 sont présentées dans le rapport détaillé : Modélisation des milieux humides des basses-terres du Saint-Laurent (Livraje 2A). Seules les performances du modèle HYDROTEL, basées sur le critère de la fonction objectif de Nash-Sutcliffe (NS), pour l’ensemble des périodes de calage et de validation et pour l’ensemble des tronçons définis sont reportées dans le tableau suivant.
Tableau 13 : Performance du modèle HYDROTEL pour l’ensemble des tronçons des deux BV pour les périodes de calage et de validation

<table>
<thead>
<tr>
<th>Tronçon</th>
<th>Période de calage</th>
<th>Nash-Sutcliffe</th>
<th>Période de validation</th>
<th>Nash-Sutcliffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bécancour TR-70</td>
<td>1995-2000</td>
<td>0.84</td>
<td>1990-1995</td>
<td>0.77</td>
</tr>
<tr>
<td>Bécancour TR-102</td>
<td>2005-2010</td>
<td>0.81</td>
<td>2000-2005</td>
<td>0.74</td>
</tr>
<tr>
<td>Bécancour TR-255</td>
<td>2005-2010</td>
<td>0.88</td>
<td>2000-2005</td>
<td>0.77</td>
</tr>
<tr>
<td>Yamaska TR-61</td>
<td>2005-2010</td>
<td>0.80</td>
<td>2000-2005</td>
<td>0.80</td>
</tr>
<tr>
<td>Yamaska TR-63</td>
<td>2005-2010</td>
<td>0.77</td>
<td>2000-2005</td>
<td>0.73</td>
</tr>
<tr>
<td>Yamaska TR-240</td>
<td>2005-2010</td>
<td>0.76</td>
<td>2000-2005</td>
<td>0.78</td>
</tr>
</tbody>
</table>
4.2.3. Évaluation du rôle hydrologique des MH en conditions actuelles

- Impact général des MH

Les résultats reportés sous la forme d'une représentation graphique des courbes de fréquences cumulées (Figure 15) des débits observés pour l'ensemble des années hydrologiques sur une période continue de plus de 30 ans (1 Octobre 1970 - 30 Septembre 2010) et selon les deux modalités de simulations – soit : (i) avec prise en compte des MH (AMH) et (ii) sans prise en compte des MH (SMH) - permettent de rendre compte de l'impact général des MH sur la distribution des débits.

Figure 15 : Courbes de fréquences cumulées des débits simulés (AMH et SMH) à l'exutoire de la Bécancour pour l'ensemble des années hydrologiques (1961-2010) en conditions : (a) de crue, (b), normales et (c) d'étiage
La Figure 16 démontre ainsi une très bonne correspondance entre les distributions des débits en conditions qualifiées de normales. En revanche, en conditions de crues et d’étiages, la divergence observée entre les courbes reflète l’impact des MH avec respectivement des débits en crues moins important et des débits à l’étiage plus importants en présence de MH et avec plus d’amplitude selon la sévérité des conditions. Pour le seuil de 50 % de fréquence de distribution, les débits en crue sont situés sous la valeur des 320 m3/s (SMH) et sous 300 m3/s (AMH). À l’inverse, en condition d’étiage, les débits sont situés sous la valeur des 6.3 m3/s (SMH) et sous 7 m3/s (AMH).

- Impact relatif des MH isolés et riverains

Considérant l’impact de chacune des typologies de MH représentés dans le modèle hydrologique, il apparaît que les MH isolés ont un impact prédominant dans la réponse hydrologique du BV tant sur les phénomènes de crues que sur les phénomènes d’étiages.

Les Figure 16 et Figure 17 illustrent les différences de variations des indicateurs hydrologiques (IH) simulées par HYDROTEL sur le groupe amont (AM et AM1) des BV respectifs de la Bécancour et de la Yamaska.
Une variation plus importante entre les MH isolés et riverains est observée en condition d’étiage sur le BV de la Bécancour (8 %) et sur le BV de la Yamaska (5 %) en comparaison de celle observée en condition de crue à savoir 1.5 % pour la Bécancour et 1 % pour la Yamaska.

4.2.4. Évolution de l’impact des MH en condition de CC

- Impact des CC

- Impact des MH en condition de CC

Pour évaluer l’impact des MH, une analyse de la variation des IH, effectuée sur l’ensemble des 10 simulations de projections climatiques et pour le même scénario d’occupation de sol de 2011, a été réalisée. Les résultats montrent des tendances équivalentes pour un bassin et un phénomène hydrologique donnés. Ces tendances, reportées sur les Figure 18 et Figure 19, reflètent le seul impact des MH dans le temps.

![Figure 18 : Impact relatif des MH en condition de CC, sur la Bécancour, pour les périodes de référence (H1), actuelle (H2) et future (H3)](image)

À noter que pour ces graphiques, l’étendue de la boîte représente l’écart entre la valeur maximale et minimale de la variation obtenue sur l’ensemble des 10 simulations de projections climatiques et le marqueur inclus dans chaque boîte marque la moyenne.

Les IH significatifs des phénomènes de crue (Q₂, Q₂₀ et Q₁₀₀) montrent une certaine constance dans le temps en ce qui concerne l’impact relatif des MH sur le phénomène de laminage des crues d’une période à l’autre, et ce tant sur le bassin de la Bécancour (variation moyenne des indicateurs > 5%) que sur celui de la Yamaska (variation moyenne > 5%). Par ailleurs, une tendance légèrement à la hausse est observable quant à l’impact des MH sur les
phénomènes d'étiage sur les deux BV pour les horizons projetés. Les IH correspondants au phénomène d'étiage (Q_{2-7}, Q_{10-7} et Q_{5-30}) présentent des écarts plus importants sur le bassin de la Bécancour d'une période à l'autre (variation moyenne des indicateurs ± 40%) que sur le bassin de la Yamaska (variation moyenne des indicateurs <= 20%).

Figure 19 : Impact relatif des MH en condition de CC, sur la Yamaska, pour les périodes de référence (H1), actuelle (H2) et future (H3)

4.2.5. Évaluation des scénarios d'occupation des sols en condition de CC

L’analyse des effets des changements d’occupation des sols par le biais de simulations réalisées sous différents scénarios d’occupation des sols, définis à la section 3.2.1.2 Cartographie du territoire est reportée sur les figures ci-dessous.

Cependant comme mentionné à la section 3.4.6 Les scénarios d’occupation des sols, des différences existent entre les valeurs annoncées des cartes d’occupation des sols futures (2050) et celles effectivement calculées par le SIG PHYSITEL. La description et l’analyse de ces différences sont reportées dans le rapport détaillé : Modélisation hydrologique des milieux humides des basses-terres du Saint-Laurent (Livrable 2C).

Les Figure 20 et Figure 21 montrent respectivement, pour les BV de la Bécancour et de la Yamaska, les variations obtenues sur les IH suite aux simulations réalisées pour les 10 scénarios de projection de CC correspondants à l’horizon H3 (2051-2099), aux exutoires des BV.
Figure 20 : Effets des changements d’occupation des sols et variations moyennes des indicateurs hydrologiques calculés sur le bassin de la Bécancour pour l’horizon H3 (2051-2099) en comparaison à la situation de 2011

TA : tendance actuelle; SQ : Statu quo; Op : optimiste; Pe : pessimiste

Figure 21 : Effets des changements d’occupation des sols et variations moyennes des indicateurs hydrologiques calculés sur le bassin de la Yamaska pour l’horizon H3 (2051-2099) en comparaison à la situation de 2011

TA : tendance actuelle; SQ : Statu quo; Op : optimiste; Pe : pessimiste
Sur les deux BV, les tendances observées sont similaires pour les scénarios TA et Pe avec respectivement des valeurs positives de l’impact relatif des MH sur les IH de crues et des valeurs négatives de l’impact relatif sur IH d’étiages, illustrant que les impacts de ces milieux pour ces scénarios seront inférieurs sous de nouvelles conditions climatiques, ce qui n’est pas souhaitables. Alors que pour le scénario Op, on observe des valeurs négatives pour l’impact relatif des MH sur les IH de crues et des valeurs positives pour l’impact relatif des MH sur les IH d’étiages, ce qui est tout à fait souhaitable. Les résultats obtenus par le biais du scénario SQ montrent des variations alors même que la situation des MH ne change pas. Cet artefact apparent de simulation, à savoir l’existence de valeurs non nulles, remarquable pour ce scénario, est également présent pour les autres scénarios de CC. Ce point est abordé dans la section 5.2 et détaillé plus largement dans le rapport détaillé : *Modélisation hydrologiques des milieux humides des basses-terres du Saint-Laurent* (Livrable 2C).

Sur le bassin de la Bécancour, la variation la plus importante de l’impact relatif est observée sur les IH de débits d’étiages et correspond à une valeur négative (∼25%) de l’impact relatif des MH du scénario Pe pour le débit d’étiage $Q_{10^{-7}}$. Plus encore, les variations les plus fortes sont toujours celles observées en condition Pe et correspondent aux variations de superficie des MH les plus importantes. De manière générale, sur le bassin de la Bécancour, en conditions de crues ou d’étiage, les variations observées sur les IH sont étroitement liées aux variations de superficies des MH.

Sur le bassin de la Yamaska, les variations les plus importantes observées correspondent à la fois à une valeur positive de l’impact relatif des MH (∼20%) des IH du débit d’étiage $Q_{10^{-7}}$ pour le scénario Op et une valeur négative de l’impact relatif (∼2-0%) du $Q_{10^{-7}}$ pour le scénario Pe. Ces variations ne sont pas systématiquement en lien avec les modifications des superficies des MH et dans ce cas, un gain de MH en condition Op (17%) produit un impact relatif plus important sur le débit à l’étiage $Q_{10^{-7}}$ (+20%) qu’une perte en condition TA (32%) qui ne produit qu’une variation de l’impact relatif de l’ordre de -13%. Cette remarque est valable sur l’ensemble des IH de débits d’étiage. Cette observation, en lien à l’artefact de simulation énoncé au préalable est abordée dans la section 5.2 et détaillé plus largement dans le rapport détaillé : *Modélisation hydrologiques des milieux humides des basses-terres du Saint-Laurent* (Livrable 2C). En revanche, en condition de crues, les variations de l’impact relatif des MH observées sur les IH sont directement liées à la variation des superficies des MH.

4.3. Analyses sur l’évaluation des bénéfices des BSÉ rendus par les MH

4.3.1. Transfert de bénéfices à l’aide de la méta-analyse

Le transfert des bénéfices a été réalisé à partir des paramètres estimés dans la méta-régression ainsi que des caractéristiques particulières des BV de la rivière Yamaska et de la rivière Bécancour. Les résultats du modèle économétrique de méta-régression est décrite dans le livrable : *Utilisation d’une méta-analyse pour le transfert de bénéfices : étude de cas des milieux humides des bassins versants des rivières Yamaska et Bécancour* (Livrable 3A).

Le Tableau 14 compare le changement de la valeur économique des MH selon les services écologiques apportés par les MH. Ainsi, la comparaison s’effectue si le MH n’apporte aucun des trois services écologiques analysés, à un seul service, puis deux services et enfin, trois services. Dans la première colonne sont présentées les valeurs à l’hectare selon les données
moyennes de notre méta-analyse, puis dans les colonnes suivantes sont présentées à titre de comparaison les valeurs des BV de la Yamaska et de la Bécancour.
La valeur économique est plus basse dans les cas des BV des rivières Yamaska et Bécancour, car il ne s’y retrouve pas d’activités commerciales dans les MH, ni de MH artificiels : deux caractéristiques qui augmentent significativement la valeur des MH. De plus, les deux BV à l’étude possèdent un pourcentage de MH isolés beaucoup plus grand que ceux retrouvés dans la banque de données de méta-analyse. Ainsi, les MH isolés ont moins de valeur. Enfin, la taille totale des MH qui se trouve dans les deux BV est plus grande que la taille moyenne de notre banque de données. Une des raisons qui expliquent une valeur par hectare plus basse pour le BV de la rivière Bécancour est le fait que le PIB/habitant y est plus bas que dans le BV de la Yamaska. Une autre raison est que la taille totale des MH du BV de Bécancour est plus grande que celle du BV de la Yamaska.

Dans le Tableau 15, les valeurs économiques par hectare de MH sont représentées en fonction des services rendus, mais également en fonction de certaines caractéristiques géographiques, soit le pourcentage du territoire en terres agricoles et en terres urbaines, ainsi qu’en fonction du type de MH (complexé ou isolé). Les variables associées au territoire ont été fixées soit à la moyenne du BV de la Yamaska, soit à 0 %. Cet exercice permet de mieux comprendre les variations entre les différentes valeurs à l’hectare de MH. Ainsi, en fonction de nos résultats économétriques et de notre procédure de transfert de bénéfices, le MH complexe aurait une valeur plus élevée que le MH isolé alors qu’un MH dont le pourcentage élevé en terres agricoles dans un rayon de 10 km aurait une valeur plus basse. De plus, ce tableau permet de conclure qu’une baisse dans le pourcentage de terres agricoles permettrait aux MH d’un certain BV d’avoir plus de valeur, ce qui peut s’interpréter par le fait que les BSE fournis par ceux-ci seront mieux rendus dans une situation avec moins d’agriculture que dans une situation avec plus d’agriculture.
Tableau 15 : Comparaison de différents cas dans le bassin versant de la Yamaska, à l’aide de la moyenne du stock et des données de 2011.

<table>
<thead>
<tr>
<th></th>
<th>Agricole = 44,31 %, Urbain = 7,29 %</th>
<th>Agricole = 0 %, Urbain = 7,29 %</th>
<th>Agricole = 0 %, Urbain = 0 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas 1</td>
<td>Complexe 330 $</td>
<td>Isolé 59 $</td>
<td>Complexe 748 $</td>
</tr>
<tr>
<td>Cas 2</td>
<td>Complexe 1 607 $</td>
<td>Isolé 287 $</td>
<td>Complexe 3 647 $</td>
</tr>
<tr>
<td>Cas 3</td>
<td>Complexe 805 $</td>
<td>Isolé 144 $</td>
<td>Complexe 1 827 $</td>
</tr>
<tr>
<td>Cas 4</td>
<td>Complexe 1 456 $</td>
<td>Isolé 260 $</td>
<td>Complexe 3 305 $</td>
</tr>
<tr>
<td>Cas 5</td>
<td>Complexe 3 923 $</td>
<td>Isolé 700 $</td>
<td>Complexe 8 904 $</td>
</tr>
<tr>
<td>Cas 6</td>
<td>Complexe 7 094 $</td>
<td>Isolé 1 265 $</td>
<td>Complexe 16 102 $</td>
</tr>
<tr>
<td>Complexe</td>
<td>Complexe 3 554 $</td>
<td>Isolé 634 $</td>
<td>Complexe 8 068 $</td>
</tr>
<tr>
<td>Isolé</td>
<td>Complexe 17 319 $</td>
<td>Isolé 3 089 $</td>
<td>Complexe 39 313 $</td>
</tr>
</tbody>
</table>

Les différents cas exposés jusqu’à maintenant ont permis d’observer différentes valeurs moyennes à l’échelle des BV. Ce processus a également été effectué à l’échelle de SB (50 km²). Cette analyse permet de déterminer les variabilités des valeurs économiques à l’échelle d’un SB. En effet, tel qu’illustré dans le Tableau 16, les différents SB ont chacun leurs caractéristiques propres, soit au niveau du pourcentage de MH isolés et complexes ainsi que le pourcentage de domination du territoire en terres agricoles et en terres urbaines. C’est grâce à cette variabilité que les différentes valeurs économiques sont estimées. Ainsi, il a été possible d’estimer une valeur totale de 180 734 998 $ pour l’ensemble du BV de la Yamaska et une valeur totale de 138 824 932 $ pour l’ensemble du BV de la Bécancour. Les valeurs moyennes sont respectivement de 9 602 $ et de 5 259 $.

Tableau 16 : Statistiques descriptives et valeurs économiques calculées à partir des sous-bassins versants

<table>
<thead>
<tr>
<th>Nom du BV</th>
<th>2011</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yamaska</td>
<td>Bécancour</td>
<td></td>
</tr>
<tr>
<td>Nombre de MH</td>
<td>3168</td>
<td>4990</td>
<td></td>
</tr>
<tr>
<td>Nombre de SB</td>
<td>105</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Taille des MH (ha)</td>
<td>Totale 18785</td>
<td>27864</td>
<td></td>
</tr>
<tr>
<td>% complexe</td>
<td>Moyenne (ÉT)</td>
<td>5,93 (20,16)</td>
<td>5,58 (22,90)</td>
</tr>
<tr>
<td>% isolé</td>
<td>Moyenne (ÉT)</td>
<td>39,47 (23,93)</td>
<td>22,28 (9,50)</td>
</tr>
<tr>
<td>% agricole</td>
<td>Moyenne (ÉT)</td>
<td>57,68 (25,00)</td>
<td>77,72 (9,50)</td>
</tr>
<tr>
<td>% urbain</td>
<td>Moyenne (ÉT)</td>
<td>42,14 (25,20)</td>
<td>22,04 (13,22)</td>
</tr>
</tbody>
</table>

| Valeur économique ($CAN 2010) | Totale 180 734 998 $ | 138 824 932 $ | |
| | Moyenne 9 602 $ | 5 259 $ | |
Les Figure 22 et Figure 23 montrent les valeurs économiques par hectare normalisées pour les SB (2011) et segmentées en quantile. La couleur rouge représente les MH ayant la plus petite valeur à l'hectare. Sur les Figure 24 et Figure 25, sont représentées les valeurs totales, soit les valeurs économiques à l'hectare multipliées par le nombre d'hectares en MH possédé par chaque SB. Évidemment, cela crée certaines différences avec les cartes précédentes puisque même si un SB peut avoir une valeur élevée à l'hectare, si le nombre d'hectares est petit, alors il se peut que la valeur demeure relativement basse par rapport aux autres SB.
Figure 22 : En 2011, pour chacun des sous-bassins versants de la rivière Yamaska (parcelles de 50 km²), les chiffres, histogrammes et couleurs représentent respectivement (selon la légende) : (1) la valeur monétaire estimée à l'hectare (chiffre sur fond blanc), (2) la proportion relative de chacun des types est donnée par l'histogramme (MH isolé, en complexes, en milieu agricole ou urbain) et (3) la valeur moyenne de l'indicateur économique résultant (normalisé entre -1 et 1).
Figure 23 : En 2011, pour chacun des sous-bassins de la rivière Bécancour (parcelle de 50 km²), les chiffres, histogrammes et couleurs représentent respectivement (selon la légende) : (1) la valeur monétaire estimée à l’hectare (chiffre sur fond blanc), (2) la proportion relative de chacun des types est donnée par l’histogramme (MH isolé, en complexes, en milieu agricole ou urbain) et (3) la valeur moyenne de l’indicateur économique résultant (normalisé entre -1 et 1).
Figure 24 : En 2011, pour chacun des sous-bassins versants de la rivière Yamaska (parcelles de 50 km²), les chiffres, histogrammes et couleurs représentent respectivement (selon la légende) : (1) la valeur monétaire totale estimée c-à-d la valeur à l’hectare à l’hectare × la superficie de MH (chiffre sur fond blanc), (2) la proportion relative de chacun des types est donnée par l’histogramme (MH isolé, en complexes, en milieu agricole ou urbain) et (3) la valeur moyenne de l’indicateur économique résultant (normalisé entre -1 et 1).
Figure 25 : En 2011, pour chacun des sous-bassins versants de la rivière Bécancour (parcelles de 50 km²), les chiffres, histogrammes et couleurs représentent respectivement (selon la légende) : (1) la valeur monétaire totale estimée c-à-d la valeur à l'hectare à l'hectare × la superficie de MH (chiffre sur fond blanc), (2) la proportion relative de chacun des types est donnée par l'histogramme (MH isolé, en complexes, en milieu agricole ou urbain) et (3) la valeur moyenne de l'indicateur économique résultant (normalisé entre -1 et 1).
4.3.2. Méthodes basées sur préférences déclarées

4.4. Outil d’aide à la décision pour la gestion des milieux humides

Cette section présente les résultats de l'intégration des indicateurs spatiaux à un outil d'aide à la décision afin de proposer des zones critiques pour l'intervention. Les résultats sont présentés pour les trois fonctions écologiques, ce qui inclut la cartographie en deux niveaux spatiaux des quatre indicateurs (deux écologiques, un socioculturel et un économique) et de l'IF pour le BV de la rivière Yamaska, en 1984, 2011 et 2050 (deux scénarios). Les résultats plus détaillés sont présentés dans le document : *Un outil d'aide à la décision pour la gestion des milieux humides : cartographie des biens et services écologiques à l'aide d'indicateurs spatiaux* (Livrable 4 BC).

La cartographie représente de façon intuitive l’efficacité des MH de chaque SB ou MB à remplir leur fonction. En effet, plus on tend vers un état critique, plus les bassins seront représentés en rouge alors qu’à l'inverse, on tend vers un état prometteur lorsque les bassins figurent en vert. Les valeurs étant normalisées pour tous les SB et les MB, l’effet de l’échelle est très important, car un SB en état critique peut ne pas l’être pour tous ses MB sous-jacents. Il se peut, par exemple, que dans un de ses MB, les MH remplissent mieux leur fonction que les autres MB du BV.

4.4.1. Fonction du support d’habitats fauniques

La Figure 26 montre les résultats cartographiques des quatre indicateurs sélectionnés au niveau SB pour évaluer la fonction de support d’habitats du bassin versant de la Yamaska. En ce qui concerne les indicateurs écologiques (I1 et I4), ils représentent, respectivement, la connectivité entre MH et les barrières anthropiques. Les SB au centre-ouest du BV sont fortement en déficit, ils représentent principalement des SB n’ayant aucun ou très peu de MH. Ainsi, il y a une très faible connectivité alors qu’à l’est, il y a beaucoup plus de complexes de MH. La pression humaine, I4, présente une distribution fortement contrastée, où les zones critiques forment des amas correspondant aux principales villes du bassin. De plus, les routes principales comme les autoroutes influencent aussi la distribution, car certaines routes ont été construites à proximité de nombreux MH. L’indicateur socioculturel, I5, démontre la diversité du type de MH au niveau des complexes. Une forte diversité présente un attrait social important qui s’apparente au premier indicateur. Néanmoins, on remarque certaines différences comme au nord du bassin. En effet, il y a de très grands complexes à ces endroits, pourtant il y a peu de diversité des types de MH à l’intérieur de ces complexes. Finalement, quoique l’indicateur économique (Ié) soit calculé de façon très différente des autres, il suit bien la tendance générale. Cela démontre que les SB ayant des valeurs économiques les plus fortes se situent dans les Appalaches. Cela correspond aussi aux zones où il y a le plus de MH. Par conséquent, ils ont une valeur économique de stock en MH plus élevée. Ces quatre indicateurs sont combinés afin d’obtenir une synthèse de la fonction,
exprimée par IF. On observe les zones qui varient de classe selon leur efficacité en termes de DD. Ainsi, la tendance générale se maintient, c’est dans l’ouest du bassin que l’on retrouve le plus de secteurs problématiques. Ce sont des SB qui longent principalement la rivière Yamaska.

Figure 26 : Indicateurs de la fonction sur le support d'habitats du BV de la rivière Yamaska en 2011, au niveau des sous-bassins

(l₁ : connectivité, l₄ : pression humaine, l₅ : diversité du complexe et lₑ : indicateur économique)

L’effet de l’échelle est très présent lorsque l’on observe les SB et les MB (Figure 27). Effectivement, il est possible d’apercevoir des phénomènes au niveau le plus fin qui n’étaient pas visibles à un niveau plus grossier. Les indicateurs mesurent les mêmes caractéristiques, mais dans différentes unités spatiales. Ainsi, de nombreux MB qui ressortent critiques alors que d’autres apparaissent en bon état. Un SB peut être composé de MB appartenant à plusieurs classes ce qui permet de déterminer, à un niveau plus fin, des zones où l’intervention serait plus propice après avoir ciblé des secteurs prioritaires lors du diagnostic.
L’approche multiéchelle permet d’obtenir une information supplémentaire aux niveaux régional et local. L’approche multitemporelle, quant à elle, permet de faire un suivi de l’état des MH à travers le temps. La Figure 28 montre la cartographie de l’IF pour les quatre périodes temporelles. Ces cartes permettent de cibler des secteurs problématiques qui seront utilisés par l’outil d’aide à la décision. On voit, en général, qu’entre la situation historique (1984) et la situation actuelle (2011), il y a plus de secteurs critiques maintenant. Cela indique une dégradation de la fonction écologique mesurée. Ce constat est probablement lié à l’importante perte de MH sur le territoire entre ces dates. Le scénario Pe (1) représente une accentuation de la dégradation des MH pour 2050. Ainsi, on peut voir, par rapport à 2011, que de nombreux SB se dégradent, alors que quelques-uns s’améliorent. Plusieurs explications découlent de ce dernier phénomène. Par exemple, quelques MH, en se dégradant, se fragmentent en créant plusieurs MH, ce qui augmente I1 et I5, en formant de nouveaux complexes. À l’inverse, le scénario Op (2) devrait présenter une amélioration globale puisqu’il reflète une restauration et une création de nouveaux MH sur le territoire. Globalement, c’est ce que l’on constate, malgré que la différence ne soit pas aussi marquée que le scénario inverse. En fait, l’agrandissement de nombreux MH a pour effet de diminuer la diversité de leur complexe en plus d’atténuer la connectivité. De plus, la perturbation anthropique (I4) s’accentue quand même dans ce scénario puisque l’occupation du territoire représente la tendance actuelle de l’évolution du territoire de 2011 à 2050. Il y a donc plus de zones urbaines, ce qui affecte plus les MH.

Figure 27 : Indicateur de fonction (IF) de support de l’habitat représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011
Une fiche synthèse (Figure 29) représente un exemple de trois cas réels. Le premier cas représente un SB où la fonction était bien remplie en 1984, alors qu’en 2011 elle se dégrade et demeure au même état pour les deux scénarios de 2050. Le deuxième cas représente une situation où le SB remplit bien sa fonction en 1984, mais elle se dégrade en 2011. Par la suite, si la tendance de dégradation se maintient (Pe), l’état demeure plus faible. Si la tendance s’inverse (Op), l’état redevient comme à l’origine (1984) et s’améliore par rapport à 2011. Enfin, le troisième cas démontre un SB qui remplissait mal sa fonction en 1984 alors que pour toutes les autres périodes, l’état s’améliore graduellement. Cet exemple démontre, à l’image de droite, la distribution des valeurs de l’IF, ce qui a permis de cibler trois cas du BV de la rivière Yamaska. Par la suite, plus en détail, on voit que la distribution en MB ne démontre pas seulement une moyenne pour revenir au niveau supérieur (SB). En fait, l’effet de l’échelle est très important et s’exprime clairement par ces cas-ci. Certains MB peuvent ne pas être critiques même s’ils se retrouvent dans un SB classé dans une classe faible. Ce genre de fiche aide à interpréter les résultats, car on peut voir, par exemple, que si le SB (à
gauche) est très critique, cela peut s’exprimer par le fait qu’il ne possède aucun MH. Ensuite, on voit qu’il est couvert par une grande partie de terres agricoles (77 %). Il est donc probable que d’anciens MH aient été convertis pour les besoins humains.

Diagnostic des sous-bassins versants de la rivière Yamaska
Indicateur de fonction (1) pour 2011

L’approche multitemporelle permet aussi de voir l’évolution des valeurs dans le temps, tout en conservant les mêmes unités spatiales. Les résultats de quatre périodes peuvent être compilés afin de faire un bilan des changements des valeurs au niveau des SB (Tableau 17). Ces données procurent un bilan de ce qui apparaît sur les cartes. De manière générale, il y a une dégradation de 1984 à 2011 et celle-ci est accentuée pour le scénario Pe (Sc1). Inversement, le scénario Op (Sc2) constitue un retour à la situation historique. On peut en conclure que la situation se dégrade très rapidement alors que l’amélioration se fait plutôt lentement. De plus, malgré que le scénario Op représente une grande augmentation de MH, de nombreuses zones continuent à se dégrader. On peut en conclure qu’en protégeant et en restaurant des MH, cela ralentira la dégradation, mais cela indique aussi qu’il faut mieux gérer les autres utilisations du sol. Finalement, le diagramme de Kiviat finalise l’outil en détaillant le poids de chaque indicateur dans la synthèse (Figure 30). En effet, si on se penche sur le troisième cas sélectionné, on peut cibler un MB en mauvais état (au sud-ouest) et analyser la variation temporelle de sa valeur d’IF. On remarque une amélioration par rapport à 1984 et en détaillant par indicateurs sur le diagramme, on découvre précisément les indicateurs qui varient. Par exemple, entre 2011 et le scénario Pe et entre 1984 et le scénario Op, ce sont les mêmes indicateurs qui s’améliorent, c’est-à-dire Ié et I4. La valeur économique est plus grande dans les projections futures et qu’il y aura moins de pression humaine. En effet, le
scénario Pe représente une perte en MH, parmi laquelle on dénote très probablement des MH qui étaient très perturbés par les activités anthropiques. Par conséquent, ceux qui restent sont moins perturbés par les humains. Pour ce qui est du scénario Op, des agrandissements de MH et une restauration potentielle de nouveaux MH loin des infrastructures anthropiques contribuent à l’amélioration de cet indicateur.

Tableau 17 : Comparaison des valeurs entre les périodes temporelles et 2011 des indicateurs de fonction de la fonction d’habitats

<table>
<thead>
<tr>
<th>Classe</th>
<th>IF (2011)</th>
<th>IF (1984)</th>
<th>IF (Scénario 1 pessimiste)</th>
<th>IF (Scénario 2 optimiste)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>3</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>29</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>42</td>
<td>27</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>31</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Différence</td>
<td>22</td>
<td>30</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>% changement</td>
<td>21</td>
<td>29</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Figure 30 : Analyse temporelle d’un microbassin d’un cas de sous-bassin de la rivière Yamaska

Indicateur de fonction (1)
Les analyses ont également été effectuées pour le BV de la rivière Bécancour. La Figure 31 montre l’effet de l’échelle pour la période de 2011. Globalement, les zones qui remplissent mieux leur fonction se situent au centre-ouest du BV, là où de nombreux MH existent. De plus, un seul SB est considéré comme très critique (ouest du BV). Au niveau plus fin, les MH critiques sont principalement distribués à l’ouest ou à l’est du bassin versant.

Figure 31 : Indicateur de fonction (IF) de support de l'habitat représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011

D’un point de vue temporel la Figure 32 montre l’IF pour les quatre périodes temporelles. L’analyse de ces cartes permet de constater sensiblement les mêmes conclusions qu’avec le BV de la rivière Yamaska. Néanmoins, il est à noter au scénario Pe un SB qui s’améliore, ce qui est assez incongru. Si on regarde ces MB, il y en a un qui remplit très bien sa fonction en 2011. Il est donc probable qu’un MB voisin s’améliore, car on distingue, notamment, une tendance des terres agricoles à disparaître au détriment de forêts, ce qui est bénéfique pour les habitats.
4.4.2. Fonctions de régulation des débits de crues

La Figure 33 montre les cartes des quatre indicateurs sélectionnés au niveau des SB pour évaluer la fonction de régulation des débits de crues. En ce qui concerne les indicateurs écologiques (I2 et I3), ils représentent, respectivement, la densité forestière et la pente du MH. Les SB au centre-ouest du BV sont fortement en déficit pour ce qui est de l’indicateur 2, ils représentent principalement des SB avec une forte proportion de terres agricoles. L’I3 présente une distribution fortement contrastée, où la tendance suit le type de province naturelle. Par exemple, dans les Appalaches on retrouve des endroits où il y a un relief plus important, donc les MH pourront moins désynchroniser le ruissellement. De plus, quelques MH au centre-ouest se distinguent de leurs voisins, il s’agit de SB qui ne possèdent pas de MH, la fonction n’est donc pas bien remplie. L’indicateur socioculturel, I5, exprime l’efficacité du MH à offrir un service de contrôle des inondations. Un MH près d’éléments anthropiques pourra mieux protéger ce dernier des inondations s’il se situe à proximité d’un cours d’eau. Cet indicateur correspond bien avec I3. Enfin, l’indicateur économique (Ié) est le même qu’avec la fonction du support d’habitats fauniques. Ces quatre indicateurs sont combinés afin d’obtenir une synthèse de la fonction, exprimée par IF. Ainsi, la tendance générale se maintient, c’est dans l’ouest du bassin que l’on retrouve le plus de secteurs problématiques. Néanmoins, on remarque énormément de SB dans la classe moyenne (jaune), alors qu’il y a peu de SB où les MH remplissent bien leur fonction.
L’effet de l’échelle est très intéressant lorsqu’on observe les SB et les MB (Figure 34). Effectivement, il est possible d’obtenir une information à un niveau plus fin qui n’était pas visible au niveau plus grossier. Ainsi, de nombreux MB qui ressortent critiques alors que d’autres apparaissent en bon état. Cela permet de déterminer, à un niveau plus fin, des zones où l’intervention serait plus propice après avoir ciblé des secteurs prioritaires lors du diagnostic. Par exemple, vers le nord du bassin, beaucoup de MB sont en état critique, mais au niveau des SB, ils apparaissent souvent dans la moyenne (en jaune).
Figure 34 : Indicateur de fonction (IF) de la régulation des débits de crues représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011
L’approche multitemporelle permet de faire un suivi de l’état des MH à travers le temps. La Figure 35 montre la cartographie de l’IF pour les quatre périodes temporelles. En général, il y a plus de secteurs critiques en 2011 qu’en 1984. Cela démontre qu’il y a effectivement une dégradation de la fonction lorsqu’on constate une diminution de MH. Aussi, on voit que le scénario Pe (1), par rapport à 2011, présente de nombreux SB très dégradés, alors que quelques-uns s’améliorent. À l’inverse, le scénario Op (2) montre une amélioration globale des MH sur le territoire. En fait, il s’agit surtout de SB problématiques qui ne le sont plus.

Figure 35 : Indicateur de fonction de la régulation des débits de crues des quatre périodes temporelles, représenté au niveau des sous-bassins
Les analyses peuvent aussi être faites pour le BV de la rivière Bécancour. La Figure 36 montre l’effet de l’échelle pour la période de 2011. On constate, globalement, que les zones qui remplissent mieux leur fonction se situe au centre-ouest du BV, là où de nombreux MH existent. Contrairement à la carte synthèse de la fonction du support d’habitats, les zones critiques se situent entièrement à l’est du bassin. C’est-à-dire que les MH contrôlent plus les débits de crues en aval. Au niveau plus fin, on remarque plusieurs MB critiques distribués seulement à l’est, mais il y a aussi quelques MB qui se portent bien.

Figure 36 : Indicateur de fonction (IF) de la régulation des débits de crues représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011
D’un point de vue temporel, la Figure 37 montre l’IF pour les quatre périodes temporelles. L’analyse de ces cartes permet de constater sensiblement les mêmes conclusions qu’avec le BV de la rivière Yamaska. Dans la situation historique, la fonction est mieux remplie au centre à l’ouest du BV. Pour le scénario Op, on ne réussit pas à avoir un aussi bon état des MH qu’en 1984, mais plusieurs SB sont moins dégradés. Le scénario Pe, pour ce qui est de l’est du bassin, semble moins dégradé qu’en 2011 alors que c’est l’inverse pour l’ouest du bassin.

Figure 37 : Indicateur de fonction de la régulation des débits de crues des quatre périodes temporelles, représenté au niveau des sous-bassins du bassin versant de la rivière Bécancour
4.4.3. Fonction de rétention des sédiments

La Figure 38 montre les cartes des quatre indicateurs sélectionnés au niveau des SB pour évaluer la fonction de rétention des sédiments. En ce qui concerne les indicateurs écologiques (I2 et I3), ils représentent, respectivement, la distribution spatiale des MH et l’élargissement du milieu. Les SB à l’ouest du BV sont fortement en déficits pour ce qui est de l’indicateur 2, ils représentent principalement des SB très dispersés. I3 présente une distribution semblable, où les MH dont la forme n’est pas propice à remplir sa fonction se retrouvent dans des SB critiques. Par contre, la distribution des classes est assez diverse sur le territoire. Ainsi, un SB peut avoir quelques MH très bien dispersés, mais qui peuvent aussi être d’une forme qui n’encourage pas la rétention des sédiments, notamment près des cours d’eau. L’indicateur socioculturel, I5, exprime l’efficacité du MH à offrir le service d’amélioration de la qualité de l’eau. Un MH près des cours d’eau pourra mieux filtrer ses sédiments. Les SB qui démontrent un bon état sont très corrélés avec la densité du réseau hydrologique. Enfin, l’indicateur économique (Ié) est le même qu’avec la fonction du support d’habitats fauniques. Ces quatre indicateurs sont combinés afin d’obtenir une synthèse de la fonction, exprimée par IF. Ainsi, la tendance générale se maintient, c’est dans l’ouest du bassin que l’on retrouve le plus de secteurs problématiques.

Figure 38 : Indicateurs de la fonction de la rétention des sédiments du bassin versant de la rivière Yamaska en 2011, au niveau des sous-bassins

La figure 39 montre les deux niveaux d'échelle qui ont permis de cartographier l'IF. On remarque de nombreux MB qui ressortent critiques alors que d'autres apparaissent en bon état. Il est intéressant de voir que plusieurs MB critiques se situent aux limites du BV.

Figure 39 : Indicateur de fonction (IF) de la rétention des sédiments représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011.
La figure 40 montre la cartographie de l’IF pour les quatre périodes temporelles. On voit, en général, qu’entre la situation historique (1984) et la situation actuelle (2011), il y a plus de secteurs critiques maintenant. Cela démontre qu’il y a effectivement une dégradation de cette fonction lorsqu’on constate une diminution de MH. Aussi, on voit que le scénario Pe (1), par rapport à 2011, présente de nombreux SB très dégradés, notamment au nord du bassin. À l’inverse, le scénario Op (2) montre une amélioration globale des MH sur le territoire. Cependant, quelques SB se dégradent malgré la simulation d’une gestion optimiste, puisque l’algorithme de simulation d’occupation future du territoire est optimiste globalement mais permet localement des dégradations.

![Figure 40 : Indicateur de fonction (IF) de la rétention des sédiments des quatre périodes temporelles, représenté au niveau des sous-bassins](image-url)
Les analyses ont également été effectuées pour le BV de la rivière Bécancour. La figure 41 montre l’effet de l’échelle pour la période de 2011. On constate, globalement, que les zones qui remplissent mieux leur fonction se situent au centre-ouest du BV, là où de nombreux MH existent. Similairement à la carte synthèse de la fonction de la régulation des débits de crues, les zones critiques se situent en grande partie à l’est du bassin. Au niveau plus fin, on remarque plusieurs MB critiques distribués seulement à l’est et à l’ouest, mais il y a aussi quelques MB qui se portent bien à l’est.

Figure 41 : Indicateur de fonction (IF) de la rétention des sédiments représenté en deux niveaux spatiaux (sous-bassin (SB) et microbassin (MB)) pour la période de 2011
D'un point de vue temporel, la figure 42 montre l'IF pour les quatre périodes analysées. Dans la situation historique, la fonction est mieux remplie au centre à l'ouest du BV, mais demeure très semblable à 2011. Pour le scénario Op, la situation s'améliore grandement. Le scénario Pe, pour ce qui est de l'est du bassin, semble moins dégradé qu'en 2011 alors que c'est l'inverse pour l'ouest du bassin.

Figure 42 : Indicateur de fonction de la rétention des sédiments des quatre périodes temporelles, représenté au niveau des sous-bassins du bassin versant de la rivière Bécancour
5. Analyse et discussion

5.1. Quels sont les défis de la caractérisation des marécages ?

L’étude de la végétation des marécages a montré que les marécages riverains et isolés avaient une composition et structure végétale distinctes. Les marécages isolés présentaient un couvert de mousses et de sphaignes plus étendu, ce qui laisse supposer que ces sites sont plus sujets au phénomène de paludification (entourbement). Ces marécages étaient également associés à des milieux montrant un drainage moins efficace que les sites riverains, ce qui peut leur conférer un rôle différent dans le BV, notamment au niveau de leur capacité à emmagasiner l’eau. Les marécages riverains, quant à eux, sont sujets à de grandes amplitudes de variation de la nappe phréatique tel qu’indiqué par les mouchetures retrouvées plus en profondeur, ce qui est en lien avec les crues plus fréquentes dans ces milieux. Ces marécages étant plus en phase avec la dynamique du cours d’eau seraient moins efficaces que les marécages isolés pour contrôler les crues et étages. Par contre, cette étude n’incluait pas de mesures hydrologiques directement sur le terrain, dû à des contraintes logistiques, ce qui restreint les conclusions quant aux rôles de ces marécages sur la gestion de l’eau.

Bien que la diversité en espèces et leur richesse ne variaient pas entre les types de marécages, plusieurs espèces étaient clairement associées au milieu riverain et d’autres au milieu isolé des cours d’eau. Ainsi, il serait possible d’associer des rôles ou services écologiques différents à ces marécages, basés sur leur composition. Les aulnaies denses semblaient par exemple être prépondérantes en milieu riverain, surtout dans les Appalaches. L’érable rouge (*Acer rubrum*) était clairement associé aux marécages isolés dans les BTSL alors que le sapin baumier (*Abies balsamea*) se trouvait aussi dans les marécages isolés, mais dans les Appalaches. Ainsi, la gestion des marécages dans les BV étudiés ne peut se faire de façon uniforme sur tout le territoire, mais devrait tenir compte des différents types de végétation qui se répartissent spatialement. Un défi majeur qui reste à relever est d’associer ces différents types de marécages à des services écologiques précis, ce qui nécessiterait de mesurer des paramètres in situ sur le terrain. Par contre certains «proxy» utilisés pour le volet géomatique peuvent être validés par le volet écologique qui a mis en relation diverses variables avec la végétation. Ainsi, la pression anthropique et la connectivité hydrographique utilisées comme indicateurs de la fonction «support d’habitats fauniques» semblent être des bons paramètres à utiliser, car nous avons montré qu’ils ont un effet sur la composition végétale. La forme du marécage a eu peu d’impact pour la végétation, mais il est probable que pour la faune, ce paramètre soit plus important. Les marécages riverains avaient tout de même un ratio périmètre surface plus grand, traduisant une forme généralement mince et allongée suivant la rivière. Ces milieux étaient sans doute plus affectés par les perturbations environnantes. La caractérisation de la végétation des marécages indique clairement que leurs rôles pourraient varier dans le paysage selon qu’ils soient reliés ou non directement à un cours d’eau. Par contre, associer précisément le type de végétation à chaque fonction ou service écologique de ces milieux, notamment leur capacité de rétention d’eau, reste un défi de taille.
5.2. Comment la modélisation hydrologique permet de mieux comprendre le rôle des MH

Cette section reprend l’essentiel des points méthodologiques et des résultats associés afin de dresser un bilan synthétique de la capacité de l’approche de modélisation à comprendre et évaluer le rôle des MH. Une analyse détaillée de chacun des points abordés est reportée dans le rapport détaillé : Modélisation hydrologiques des milieux humides des basses-terres du Saint-Laurent (Livraisons 2A, 2B et 2C).

Pour les deux bassins à l’étude, le modèle hydrologique HYDROTEL qui a été adapté à la prise en compte des MH offre des représentations jugées satisfaisantes de la distribution des débits observés. Plus spécifiquement, HYDROTEL représente avec une bonne précision à la fois le synchronisme et l’amplitude des crues. De plus, la performance du modèle HYDROTEL, basée sur le critère de la fonction objectif du Nash-Sutcliffe demeure satisfaisante tant sur des considérations annuelles que saisonnières. Ainsi, tant les schémas de représentation des MH définis dans la modélisation (fonction de stockage/déstockage) que la méthodologie employée pour la modélisation hydrologique, reposant sur une analyse comparative de simulations avec et sans MH, apparaissent pertinents pour l’évaluation du rôle des MH sur la réponse hydrologique du BV pour divers horizons futurs avec les scénarios de CC produits par le MRCC.

En conditions climatiques actuelles, l’analyse comparative des sorties des simulations hydrologiques, à travers l’observation des courbes de fréquences cumulées des débits simulés ou encore des IH, démontre clairement l’impact des MH en conditions hydrologiques de crue (laminage) et d’étiage (soutien). En revanche, la superposition de ces courbes en conditions hydrologiques normales illustre que les MH ont un impact limité en dehors de conditions extrêmes. En conditions de CC, cette même analyse permet de dresser des tendances évolutives de l’impact des MH et démontrent le rôle majeur que vont jouer ces derniers dans le futur et notamment si on considère les conditions de basses eaux.

De plus, deux points particuliers sont permis par l’approche de modélisation adoptée :

- La discrimination des MH en milieux isolés et riverains. Cette discrimination permet un niveau de compréhension supplémentaire quant au rôle des MH sur la réponse hydrologique à l’échelle du BV. Au regard des schémas de modélisation développés dans le modèle HYDROTEL et de la possibilité de faire varier virtuellement certaines caractéristiques physiques (superficie des MH, localisation des MH sur le bassin), il devient alors possible de définir des conditions optimales de fonctionnement de chacune des typologies et d’illustrer leur rôle respectif pour des conditions hydrologiques variées (crue, étiage, normale). Dans le cadre du projet, il apparaît que les MH isolés jouent un rôle prépondérant sur l’ensemble des conditions hydrologiques.

- L’intégration de différents scénarios d’occupation des sols. Cette intégration au sein de la modélisation permet l’évaluation de leur impact sur les débits (ou IH) en conditions actuelles tout comme en conditions de CC. Axée sur l’évolution des MH, les résultats de la modélisation permettent d’alimenter les réflexions menées sur l’évaluation de l’efficacité de scénarios de gestion de ces milieux comme stratégies d’adaptation face aux CC. Autrement dit, considérant à la fois l’évolution anthropique du territoire et les effets attendus des CC, la modélisation hydrologique développée permet d’évaluer si
la conservation/restauration des MH est suffisante/nécessaire pour maintenir les conditions hydrologiques actuelles et au besoin de compenser les perturbations induites par les activités anthropiques et les CC. Il est à noter que la méthode d’analyse des scénarios d’occupation des sols souligne également l’impact des changements des occupations autres que les milieux humides. En ce sens, la méthode tente de minimiser cet impact mais il demeure présent comme le démontre le scénario de SQ. Ce même impact peut aussi expliquer les similitudes entre les résultats pour les scénarios Op et Pe sur le bassin Yamaska. Néanmoins dans le cas du projet, il apparaît que seule une gestion des MH, basée sur la restauration de sites, permettra à la fois de compenser les perturbations liées à l’anthropisation du territoire et de mitiguer les effets attendus des CC.

Cela étant, certains points d’analyses cruciaux sont encore non disponibles ou fastidieux et certaines améliorations pourraient contribuer à augmenter les performances de cet outil :

- L’acquisition de données in situ est en cours sur le bassin de la Bécancour. Les informations ainsi recueillies sur les deux typologies fonctionnelles des MH sont essentielles pour confronter les hypothèses de fonctionnement définies dans l’approche de modélisation. La confrontation des données de terrain et des données de simulation permettra notamment d’évaluer le comportement des MH au sein de la modélisation en termes de dynamique hydrologique (adéquation des hydropériodes).
- À ce jour, le modèle HYDROTEL n’est pas en capacité de produire des cartes de sensibilité du territoire. Une telle fonctionnalité pourrait permettre par exemple de visualiser l’évolution des débits à l’échelle de l’UHRH. Une telle amélioration assurerait un meilleur arrimage avec les outils géomatiques développés dans le projet en cours.
- La détermination des indicateurs hydrologiques se fait présentement en parallèle de la modélisation. L’intégration du calcul de ces indicateurs au sein du modèle, de manière automatisée, permettrait de réduire le temps de traitement des informations et des résultats.
- Une demande forte des différents acteurs réside dans le questionnement de l’impact de la spatialisation des MH sur la réponse hydrologique à l’échelle du BV. Pour renforcer la compréhension de l’impact de ces MH, une analyse approfondie permettrait de tester les variations des indicateurs hydrologiques en réponse à des patrons de distribution des MH variés.
- Pour répondre également à la demande des acteurs locaux en termes de gestion du territoire, la définition de seuil de fonctionnalité des MH est nécessaire, à savoir (i) l’évaluation de l’impact des MH en fonction du maintien et du respect de seuils de débits particuliers (débits réservés) et (ii) la détermination des rapports superficie des MH/variation des débits afin d’obtenir des informations en lien à l’efficacité des plans de gestion (coûts/bénéfices).

Enfin, l’aspect complexe et multiparamétriques de la définition du rôle et de l’impact des MH et la génération importante de données au regard du nombre de simulations nécessaires pour la prise en compte des projections climatiques et des différents scénarios d’occupation des sols, nécessite du temps supplémentaire et un effort important et constant dans le traitement des données à des fins : (i) d’optimisation d’exploitation du modèle (test de l’impact de la spatialisation des MH, analyse de seuil de fonctionnalité, etc ...), (ii) de mise en place d’analyses automatisées, et (iii) de développement de méthode de représentation et de communication des résultats.
5.3. Comment la démarche de l’évaluation économique peut servir à mieux estimer les biens et services écologiques procurés par les MH

Dans le contexte où les MH prodiguent des biens et services non marchands, plusieurs méthodes économiques ont été développées pour octroyer une valeur aux bénéfices qu’ils génèrent à l’aide d’une métrique comparable avec laquelle les gens et les décideurs sont à l’aise, c’est-à-dire une valeur monétaire exprimée en dollars. Grâce à l’obtention de ces valeurs monétaires, il devient possible pour les décideurs de prendre des décisions plus éclairées en comparant les coûts estimés de la préservation ou de la restauration des MH, aux bénéfices qu’ils génèrent, permettant par le fait même la réalisation d’analyses coûts-bénéfices.

Parmi les différentes méthodes d’évaluation économiques des BSE, certaines permettent de capter la valeur d’usage seulement et d’autres, la valeur d’usage ainsi que la valeur de non-usage. L’utilisation des méthodes d’évaluation contingente ainsi que de choix multi-attributs, soit les méthodes de préférences exprimées, est ainsi plus pertinente, car celles-ci permettent l’évaluation de ces deux types de valeurs (pour plus d’information, consultez le Guide méthodologique pour l’évaluation économique des biens non marchands dans un contexte d’augmentation de la capacité de prendre des décisions d’adaptation produit par Ouranos) et d’identifier l’importance relative de différents services écologiques fournis par les MH pour la population en général. Cette raison explique en partie le choix de ces méthodes pour la réalisation de l’étude primaire sur les MH des deux BV québécois analysés dans ce projet.

Les résultats obtenus avec la méta-analyse se comparent aux résultats obtenus dans le cadre d’une autre étude de transfert de bénéfices (Boyer, 2013), soit le transfert de valeurs avec ajustement et le transfert de fonctions. Les données utilisées pour ces deux autres méthodes de transfert de bénéfices proviennent de l’étude de Pattison et al. (2011), l’une des trois études canadiennes incluses dans la banque de données de la méta-analyse. Il est intéressant de constater qu’il semble y avoir une convergence dans les valeurs économiques obtenues à l’aide de différentes méthodes de transfert de bénéfices laissant croire que ce sont des valeurs plausibles. Il est ainsi question d’une valeur à l’hectare se situant entre 17 879 $/ha/an et 18 965 $/ha/an pour le BV de la Yamaska et d’entre 10 602 $/ha/an et 14 063 $/ha/an pour le BV de la Bécancour.

En conséquence, la valeur économique obtenue à l’aide de la méta-analyse est une valeur générale qui permet d’informer et de sensibiliser le public ou encore de hiérarchiser les priorités d’action. Il ne faudrait toutefois pas que cette valeur soit utilisée pour calculer des valeurs spécifiques de certains milieux ou encore pour déterminer des montants de compensation pour des paiements à la suite de la conservation ou à l’inverse, de la destruction de MH, car les chiffres proposés par cette méthode visent à dévoiler la valeur intrinsèque des MH. Cette dernière reflète essentiellement une valeur sociétale plus grande qu’une valeur d’usage qui repose seulement sur des bénéfices personnels associés avec l’exploitation directe ou indirecte des BSE. Cette valeur intrinsèque diverge souvent de la valeur de marché des MH puisque cette dernière englobe seulement les valeurs d’usage potentielles issues des activités d’exploitations économiques. Ainsi, dans le cas des MH, un paiement de compensation ne devrait pas reposer sur la valeur intrinsèque, mais plutôt sur une valeur de marché associée avec le fait que certaines activités économiques sont empêchées du fait qu’il y ait des MH (par exemple, des activités agricoles, développement immobilier).
Pour terminer, l’utilité des études économiques pour l’évaluation des BSE fournis par les MH réside principalement dans l’établissement d’un intervalle de valeurs plausibles pour ceux-ci. La convergence des valeurs retrouvées dans les études de transferts de bénéfices semble témoigner de la plausibilité de ces valeurs. Il sera bientôt possible de comparer ces valeurs avec celles provenant des méthodes de préférences déclarées. Ces valeurs pourront ainsi constituer un barème de référence pour la réalisation d’études coûts-bénéfices de projets de préservation ou de conservation des MH par la mesure économique des bénéfices générés par les BSE des MH.

5.4. L’analyse spatiale permet-elle un diagnostic précis et facilite-t-elle l’intervention, la conservation et l’adaptation aux CC ?

L’analyse spatiale telle que nous l’avons proposée a permis de caractériser le rôle des MH comme élément de mitigation pour réduire les impacts négatifs des activités anthropiques ou des CC. Dans ce contexte, la cartographie des BSE à l’aide d’indicateurs spatiaux sert d’outil pour appuyer la prise de décision. Cet outil peut donc être intégré dans la pratique des aménagistes du territoire en mettant l’accent sur la notion de durabilité. Ils établissent plus particulièrement un diagnostic détaillé en plus de spécifier les lieux d’interventions prioritaires en tenant compte de l’état des fonctions écologiques des MH se situant dans le territoire étudié.

Les résultats de la cartographie des BSE permettent de cibler les MH qui sont efficaces ou inefficaces à performer une fonction importante à différentes échelles spatiales afin de prioriser les zones d’interventions. L’efficacité des fonctions écologiques pour chaque MH est évaluée à l’aide d’indicateurs spatiaux traduisant plusieurs services écologiques selon les critères du DD. Cette analyse spatiale a permis de déterminer les zones d’application des trois BSE des MH selon différentes échelles spatiales. L’approche multiéchelle permet d’obtenir une information supplémentaire aux niveaux régional et local. Le niveau plus grossier permet de comparer les zones entre elles afin de déterminer certains secteurs prioritaires où la fonction n’est pas bien remplie par les MH. À une échelle plus fine, il permet d’identifier les zones plus propices à l’intervention où les efforts devraient optimiser la performance d’une fonction.

L’approche multitemporelle permet d’effectuer un suivi de l’état des MH à travers le temps. L’intégration des scénarios pessimiste et optimiste permettent de mieux évaluer le rôle du milieu humide à répondre aux fonctions de mitigation comme stratégies d’adaptation face aux CC. Les résultats montrent, de manière générale, une dégradation des fonctions de support d’habitat faunique, de la régulation des débits de crues ainsi que de la rétention des sédiments, relié à la diminution des MH. Une amélioration des fonctions est observée lors de la restauration des MH. Toutefois, malgré l’augmentation de MH, plusieurs zones continuent à se dégrader du aux nombreuses pressions anthropiques qui s’exercent sur les MH. Il est donc important de prendre en considération les autres facteurs externes, soit l’occupation du territoire. En considérant l’évolution des milieux humides ainsi que l’évolution de l’occupation du territoire, la classification basée sur les fonctions et les BSÉ permet d’évaluer l’efficacité de la restauration des MH en impliquant également la gestion des autres utilisations du sol. Cette approche est très intéressante pour prévoir les changements futurs. En effet, des simulations basées sur les effets des activités anthropiques et des CC subis par les MH et les autres classes de l’occupation du territoire sont possibles. En utilisant la méthode d’analyse spatiale,
l’état des MH peut être évalué selon ces différentes possibilités et l’intervention pourra être favorisée en prévoyant l’évolution de leur situation.

L’approche multifonction est nécessaire pour étudier divers éléments des MH. En effet, les MH ne remplissent pas seulement une fonction à la fois, mais sont souvent une source de nombreux BSÉ. L’analyse de trois fonctions importantes est primordiale pour éviter de baser la gestion du territoire sur l’étude d’une seule fonction où sa protection pourrait se faire au détriment des deux autres. D’ailleurs, comme la cartographie des fonctions ne donne pas la même information, se pencher sur les zones qui sont en déficits des trois fonctions à la fois démontre les secteurs les plus critiques du territoire. Notre analyse sur ces trois fonctions procurées par les MH, parmi les plus importantes, démontre qu’il sera toutefois nécessaire de déterminer quels sont les autres fonctions significatives et par quel mécanisme une vision globale pourra s’appuyer sur l’impact de chacune des fonctions significatives.

L’ensemble de l’analyse appliquée pour les deux BV démontre le potentiel quant à l’utilisation d’un outil pratique pour les intervenants. L’utilisation d’indicateurs spatiaux facilite la mise en place d’un outil synthèse permettant de quantifier les fonctions écologiques des MH. Cela permet de bâtir une méthode quantifiable pouvant être reproduite ou adaptée à d’autres sites d’études compte tenu de la complexité du milieu étudié. L’analyse spatiale permet d’établir l’importance des MH dans un espace donné pour remplir les fonctions afin de limiter les effets des CC.

5.5. Perspectives d’une approche élargie pour mieux comprendre le rôle des MH et leur apport pour l’adaptation aux CC ?

Les apports ont déjà été précisés par volet individuel, cela étant, il ressort de notre étude que la convergence des solutions par les contributions multidisciplinaires a permis une avancée qui n’aurait pas pu prendre place dans un cadre centré sur une seule thématique. Fort de ce constat, il est aussi important de signaler que les compétences en place et la volonté démontrée de progresser dans ce contexte multidisciplinaire ont fait la différence. De plus, chaque spécialiste impliqué comme chercheur dans ce projet permet une diffusion plus efficace des outils dans son milieu respectif. Ceci se concrétise par l’adoption potentielle par le CEHQ de l’ajout des MH dans la modélisation hydrologique. Le volet biologique permet aussi à des partenaires comme CIC, le MDDEF ou Environnement Canada de mieux comprendre les MH. La question économique a progressé par l’analyse faite dans le cadre de cette étude au point où elle permettra d’alimenter plusieurs autres initiatives reliées tel que le « compte des écosystèmes du Québec » (selon les termes établis par les Nations unies (,

Nous tenons à soulever quelques constats pratiques qui ressortent de notre exercice afin de mieux guider les exercices à venir sur le même sujet. Premièrement, dès le début du projet, il a été surprenant de constater la qualité inégale et quelquefois le manque de données cartographique de qualité minimale pour offrir une base à nos analyses. Ceci concerne autant les cartes d’occupation du territoire que l’identification des MH. Heureusement, nous avons bénéficié d’une carte récente des MH fournie par Canards illimités du Canada pour les deux BV à l’étude. Toutefois, il nous a fallu produire toutes les cartes d’occupation du territoire à l’aide des images satellites et aussi produire les cartes historiques (1984) et prédictives (2050) des MH. Il sera important dans la généralisation de nos travaux d’identifier l’effort requis pour cette mise en place des données de références. Deuxièmement, l’implication des partenaires et intervenants est cruciale au projet mais demande passablement de temps. Notre participation à de nombreux forums, ateliers ou simplement la mise en place de réunions de travail ont nécessité un investissement de temps au-delà de ce qui était prévu. Heureusement, ces efforts à ce sujet nous laissent l’impression que les partenaires identifiés dès le début du projet ont bien accompagné l’étude avec le sentiment d’avancement sur ce sujet d’importance pour eux. D’une manière aussi prioritaire, nous avons réussi à rejoindre un bon nombre d’organismes, surtout des OBV des BTSL, afin de les informer de la disponibilité de nos outils. À ce titre, nous avons procuré une liste de représentants qui nous ont laissé savoir leur intérêt à participer à la mise en œuvre de nos outils sur le territoire sous leur juridiction.

La continuité de notre projet apparaît importante pour plusieurs raisons : (i) les outils maintenant disponibles pourraient être appliqués dans la majorité des BV des BTSL afin de procurer une stratégie commune de gestion des MH, (ii) nos avancées scientifiques concrètes ont pavé la voie pour des aspects plus avancés de nos méthodes et (iii) nos résultats démontrent une meilleure compréhension du rôle des MH selon plusieurs disciplines et un projet en continuité permettrait d’aller plus loin pour la compréhension fondamentale des questions scientifiques clés dans cette thématique.
6. Conclusion et recommandations

Notre étude propose des outils d’analyse concrets pour quantifier les apports des MH dans un contexte de mitigation des impacts négatifs liés aux CC. Trois fonctions écologiques fournies par les MH ressortent des nombreuses autres disponibles : la régulation des crues et des étiages, la capacité de rétention des sédiments et la fonction d’habitat pour une plus grande biodiversité. Le volet biologique a permis de mieux comprendre les MH. Les résultats de ce volet ont permis entre autres de mieux paramétrer les MH dans un contexte de modélisation hydrologique. La connaissance des MH a aussi aidé à mieux choisir les indicateurs spatiaux les plus liés aux fonctions écologiques rendues. Similaires, les analyses du volet économique ont alimenté la mise en place d’indicateurs spatiaux pour s’assurer de l’usage d’indices les plus complémentaires possible pour tenir compte des critères de développement durable. Les volets de modélisation hydrologique et géomatique proposent donc un ensemble d’outils d’analyse pour quantifier le rôle des MH pour l’adaptation au CC.

Pour leur part, les indicateurs spatiaux des fonctions écologiques, issus de l’analyse géomatique, procurent un moyen pratique jusqu’à maintenant non exploité à leur potentiel. Il est intéressant de constater une certaine convergence du degré de priorité des zones de diagnostic sans regard à la fonction. Toutefois, les modulations fines des priorités et surtout leur disponibilité au niveau du microbassin permet de guider concrètement les interventions liées à la gestion des MH. Suite à nos travaux, l’usage des indicateurs spatiaux pour le diagnostic et l’intervention pourra s’affiner d’abord avec l’usage plus intensif dans les pratiques de gestion, lors de la confrontation avec des cas pratiques et enfin avec sa généralisation à d’autres bassins versants au Québec. La dimension d’analyse temporelle de l’outil d’aide à la décision apporte aussi un appui significatif à la gestion du territoire car elle met en relief l’évolution temporelle jusqu’à la condition actuelle en plus de la mise en relation des scénarios potentiels d’aménagement du territoire.

À la lumière des CC prévus, les résultats de notre étude montrent que le maintien du niveau actuel de MH apportera une diminution des fonctions écologiques qu’ils rendent. Ceci implique qu’il est prévisible de voir, même dans un scénario de maintien des MH, plusieurs situation de dégradation de notre milieu : (i) une augmentation des situations de crues et d’étiages, (ii) une plus grande turbidité des eaux de rivières et (iii) une perte nette de
biodiversité. Pourtant, le scénario présentement en cours consiste plutôt en une diminution des MH, ce qui implique des conditions encore plus défavorables. Notre étude permet de statuer fermement que selon les CC prévus, nous pouvons nous prononcer sur une augmentation de conséquences environnementales négatives associées à la diminution des fonctions écologiques fournies par les MH. En conséquence, nous croyons urgent de poursuivre les travaux scientifiques pour mieux documenter les pistes concrètes de solutions afin de s’adapter aux CC.

Vu l’urgence de mieux documenter les pistes pour appuyer la gestion des MH, nous suggérons trois axes pour une continuité de l’approche multidisciplinaire entamé dans notre projet : (1) établir les moyens pour généraliser les outils existants sur plus de BV, (2) approfondir les questions critiques à une meilleure compréhension des MH et de leur rôle, et (3) poursuivre l’amélioration des outils d’analyse, principalement par la modélisation hydrologique et géomatique.
7. Références

Heston, A., R. Summers, and Aten B. (2012), Penn World Table, version 7.1, Cent. for Int. Comparisons of Prod., Income and Prices at the Univ. of Penn., Philadelphia.

Annexe 1 : Système de classification

1. **Agriculture** : Champs agricoles

2. **Anthropique** : Surfaces imperméables incluant routes, bâti, stationnements, etc.

 2.1. **Bâti ouvert** : Mélange de surface imperméable et non imperméable telle la végétation (par exemple : quartier résidentiel avec végétation ou route entremêlée de végétation

 2.2. **Bâti dense** : Prédominance de surfaces imperméables (par exemple : stationnement, zone commerciale sans végétation, etc.)

3. **Forêt** : zone ayant une couverture arborescente de plus de 25%

 3.1. **Résineuse** : Prédominance d’arbres résineux

 3.1.1. **Résineuse dense** : couverture d’arbre entre 60 et 100 %

 3.1.2. **Résineuse ouverte** : ouverture d’arbre entre 25 et 60 %

 3.2. **Mixte** : Mélange de feuillus et de résineux

 3.2.1. **Mixte dense** : couverture d’arbre entre 60 et 100 %

 3.2.2. **Mixte ouverte** : couverture d’arbre entre 25 et 60 %

 3.3. **Feuillue** : Prédominance d’arbres feuillus

 3.3.1. **Feuillue dense** : couverture d’arbre entre 60 et 100 %

 3.3.2. **Feuillue ouverte** : couverture d’arbre entre 25 et 60 %

4. **Hydrographie** : Étendue d’eau ayant une profondeur de plus de 2 m.

5. **Milieux humides**

 5.1. **Bog** : tourbières, c.-à-d. un MH où le sol est mal drainé et la matière organique s’accumule à la surface. L’épaisseur de la tourbe doit être de 40 cm ou plus pour qu’un site soit considéré comme une tourbière. Les bogs, aussi appelés tourbière ombrothophe, sont généralement situés dans un paysage plat. Ils sont également caractérisés par leur alimentation en eau qui est basée uniquement sur les précipitations, le brouillard et la fonte. Le sol y est donc acide et pauvre en nutriments et les sphaignes et les éricacées sont le type de végétation que l’on retrouve habituellement dans les bogs.

 5.2. **Fen** : tourbière minérotrophe, diffère du bog par son approvisionnement en eau qui provient de l’écoulement de surface et souterrain en plus des précipitations. Cette alimentation lui assure un apport constant en nutriments et il est ainsi généralement moins acide qu’un bog. La végétation de ce type de milieu varie selon les éléments nutritifs que l’on y trouve et l’humidité du sol, mais les mouches brunes et les herbacées tels les cypéracées sont souvent présents dans les fens.
5.3. **Eau peu profonde**: transition entre les MH et l’eau profonde en permanence, et ils ont une profondeur maximale de 2 mètres au milieu de l’été. Il peut s’agir par exemple, d’étangs, de mares, de dépressions et de cuvettes situés en bordure d’un fleuve, d’une rivière ou d’un lac. La végétation émergente ne doit pas dépasser 25% de la superficie du milieu pour être considérée comme une eau peu profonde.

5.4. **Marécage**: MH minérotrophes et donc riches en éléments minéraux. Ils diffèrent toutefois des marais par leur couverture végétale qui est dominée par des arbres ou de grands arbustes. De plus, ces derniers peuvent être situés sur un sol minéral ou organique (tourbe).

5.5. **Marais**: MH minérotrophes, c.-à-d. qu’ils sont riches en nutriments et qu’ils sont généralement adjacents à un fleuve, un lac ou un écoulement d’eau. Ces derniers ont la particularité de subir une grande variation du niveau de l’eau sur un cycle quotidien, saisonnier ou annuel. La couverture végétale est généralement composée de plantes émergentes, flottantes et submergées.

5.6. **Tourbière boisée**: sous-classe de marécage. MH arborescent avec une épaisseur de tourbe de 30cm ou plus. On les retrouve principalement en bordure des bogs et des fens.

5.7. **Prairie humide**: sous-classe de marais. MH ayant une végétation graminéide, inondé une partie de l’année. Ils sont généralement maintenus artificiellement.

6. **Sol nu**: Surface non végétalisée et non utilisée pour l’agriculture (par exemple, carrière, gravière, formation rocheuse, etc.)

7. **Végétation** (non agricole et non forestière): zone végétalisée ayant une couverture arbustive de moins de 25% et non utilisée pour l’agriculture (par exemple, friche, parc urbain, terrain de golf, etc.)

8. **Tourbière exploitée**: Tourbière servant à l’exploitation d’une ressource, telle la tourbe ou la canneberge.
Annexe 2: Description des indicateurs

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>La présence de deux MH proches l'un de l'autre favorise la libre circulation des poissons, et ces deux îlots devraient supporter plus d'espèces que s'ils étaient isolés. La proximité entre les autres habitats assure la migration des espèces.</td>
<td>McHattie et al., 2004 ; Brown et Dinsmore, 1986 ; Kindlmann et Burel, 2008 ; Uuemä et al., 2009</td>
</tr>
<tr>
<td>I2</td>
<td>Un MH de forme circulaire est moins touché par l'effet de lisière et maximise l'habitat intérieur qui se traduit par un milieu moins fragmenté. L'indice de circularité de Miller s'applique bien aux habitats circulaires, qui sont recommandés pour minimiser le contact entre l'habitat intérieur protégé et leur environnement adjacent alors que des habitats longs et étroits ont proportionnellement plus d'effet de lisière.</td>
<td>Joly et al., 2008 ; McHattie et al., 2004 ; Environmental Law Institute, 2003</td>
</tr>
<tr>
<td>I3</td>
<td>Un MH procure une plus grande diversité d'espèces aquatiques s'il est connecté au réseau hydrologique. La diversité aquatique et l'accessibilité à la nourriture sont plus importantes dans les cours d'eau d'ordres supérieurs, particulièrement pour les systèmes riverains.</td>
<td>Adamus et al., 1991 ; Cedfeldt et al., 2000 ; Moreno et al., 2010</td>
</tr>
<tr>
<td>I5</td>
<td>La diversité des complexes de MH permet de déterminer l'hétérogénéité du territoire, ce qui présente un attrait social.</td>
<td>Dramstad et al., 2006</td>
</tr>
<tr>
<td>I6</td>
<td>La densité des milieux forestiers autour des MH apporte une dimension sociale importante quant à la perception naturelle des habitats.</td>
<td>Hoeltje et Cole, 2009 ; Environmental Law Institute, 2003</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Référence</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>I1</td>
<td>Fonction de la régulation des débits de crues</td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>Un MH de grande taille a une plus grande capacité de stockage et altère plus le débit lors d'inondations.</td>
<td></td>
</tr>
<tr>
<td>I3</td>
<td>Un MH avec des bandes denses de végétation désynchronise les débits de crues. Les MH avec une végétation arborée ou arbustive désynchronisent plus les débits de crues puisque l'écoulement est plus rapide lorsque la végétation est dispersée.</td>
<td></td>
</tr>
<tr>
<td>I4</td>
<td>Plus la pente est faible, plus l'habilité d'atténuer le débit est puissant. L'écoulement est plus rapide lorsque la pente de l'aire drainée est accrue.</td>
<td></td>
</tr>
<tr>
<td>I5</td>
<td>La fonction dépend de l'élévation relative au cours d'eau adjacent. Les marécages situés en bordure des grands cours d'eau absorbent les eaux de crue et réduisent ainsi les débits de pointe et les risques d'inondation en aval. La position du MH dans le BV est un facteur important pour le processus.</td>
<td></td>
</tr>
<tr>
<td>I6</td>
<td>La proximité du MH avec le cours d'eau et la société offre un service de protection contre les inondations d'une grande valeur pour les zones urbanisées puisqu'une telle protection peut limiter les dommages potentiels subis par les propriétés résidentielles, commerciales et industrielles. La protection économique dépend, entre autres, de la proximité du bâti le long des rives et particulièrement lorsque le MH est situé en amont d'une communauté.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Fonction de la rétention des sédiments</td>
<td></td>
</tr>
<tr>
<td>I2</td>
<td>Les MH dominés par des forêts, des arbustes ou une végétation émergente retiennent plus de sédiments. Les MH avec une bande de végétation et de forêt dense retiennent plus les sédiments, ce qui contribue à améliorer la qualité de l'eau.</td>
<td></td>
</tr>
<tr>
<td>I3</td>
<td>Des MH plus dispersés et nombreux réduisent mieux la quantité de sédiments qu'un nombre faible de parcelles agrégés, car dans l'aire contributrice, ils augmentent la complexité de la configuration du paysage (densité et hétérogénéité des parcelles) ce qui réduit la quantité de sédiments en suspension et particulièrement l'écoulement de matière organique.</td>
<td></td>
</tr>
<tr>
<td>I4</td>
<td>Un MH ayant une forme plus complexe, irrégulière et allongée représente souvent un milieu ancré d'un cours d'eau qui peut être chargé en sédiments, principalement pour l'eau peu profonde. Les milieux longs et étroits sont plus efficaces puisqu'ils sont souvent riverains. Dans les formes irrégulières il y a moins de chance qu'un drainage se rende directement au cours d'eau, donc moins de chance d'avoir des eaux usées qui ont tendance à s'écouler directement dans ces canaux étroits.</td>
<td></td>
</tr>
<tr>
<td>I5</td>
<td>Un MH près d'un plan d'eau utilisable par l'humain offre un service d'amélioration de la qualité de l'eau.</td>
<td></td>
</tr>
<tr>
<td>I6</td>
<td>La proximité du MH avec la société permet d'offrir un service de qualité de l'eau.</td>
<td></td>
</tr>
</tbody>
</table>
Annexe 3: Tableau des groupes de variables explicatives de la végétation des marécages

<table>
<thead>
<tr>
<th>Groupes</th>
<th>Variables explicatives</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Microtopographie</td>
<td>Étangs_vernaux</td>
<td>Recouvrement d'étangs vernaux dans la grande placette</td>
</tr>
<tr>
<td></td>
<td>Surélévations</td>
<td>Recouvrement des souches, roches, racines et autres support pour la végétation</td>
</tr>
<tr>
<td></td>
<td>Hétérogénéité_terrain</td>
<td>Cote de degré de dénivellation du terrain exprimant la présence de vallons dans les sites</td>
</tr>
<tr>
<td>2. Sol</td>
<td>Épaisseur_B</td>
<td>Épaisseur de l’horizon B du sol en cm</td>
</tr>
<tr>
<td></td>
<td>Texture</td>
<td>Cote de texture du sol représentant un gradient de grains fins à plus grossier</td>
</tr>
<tr>
<td></td>
<td>Von_Post_20</td>
<td>Cote de dégradation de la tourbe sur l’échelle de Von Post</td>
</tr>
<tr>
<td></td>
<td>Mouch_prof</td>
<td>Profondeur des mouchetures à partir de l’horizon minéral</td>
</tr>
<tr>
<td></td>
<td>Mouch_abond</td>
<td>Abondance des mouchetures dans le sol</td>
</tr>
<tr>
<td></td>
<td>Drainage</td>
<td>Cote de drainage. Plus la cote est grande plus le sol est mal drainé</td>
</tr>
<tr>
<td></td>
<td>Pierrosité_cailloux</td>
<td>Recouvrement des cailloux dans la grande placette</td>
</tr>
<tr>
<td>3. Occupation du territoire</td>
<td>Forêt_1km</td>
<td>Recouvrement de forêt dans une zone tampon d’un km de rayon autour des sites</td>
</tr>
<tr>
<td></td>
<td>Eau_1km</td>
<td>Recouvrement de cours d’eau et plans d’eau dans une zone tampon d’un km de rayon autour des sites</td>
</tr>
<tr>
<td></td>
<td>Urbain_1km</td>
<td>Recouvrement d’espaces urbains dans une zone tampon d’un km de rayon autour des sites</td>
</tr>
<tr>
<td></td>
<td>Agri_1km</td>
<td>Recouvrement de terres agricoles dans une zone tampon d’un km de rayon autour des sites</td>
</tr>
<tr>
<td></td>
<td>MH_1km</td>
<td>Recouvrement de milieux humides dans une zone tampon d’un km de rayon autour des sites</td>
</tr>
<tr>
<td>4. Paysage</td>
<td>Superficie</td>
<td>Superficie des sites</td>
</tr>
<tr>
<td></td>
<td>Périmètre</td>
<td>Périmètre des sites</td>
</tr>
<tr>
<td></td>
<td>Ratio_peri_surf</td>
<td>Ratio périmètre-surface des sites</td>
</tr>
<tr>
<td>5. Topographie</td>
<td>Élévation</td>
<td>Élévation du site par rapport au niveau de la mer</td>
</tr>
<tr>
<td></td>
<td>Pente_300m</td>
<td>Pente dans un rayon de 300m autour du site</td>
</tr>
</tbody>
</table>
Annexe 4 : Tableau des espèces végétales et de leurs valeurs Indval 1 et 2 (p=0,001 pour toutes les espèces)

<table>
<thead>
<tr>
<th>Abréviations</th>
<th>Nom latin</th>
<th>Valeur IndVal 1</th>
<th>Valeur Indval 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abi_bal</td>
<td>Abies balsamea</td>
<td>0,59</td>
<td>0,34</td>
</tr>
<tr>
<td>Ace_neg</td>
<td>Acer negundo</td>
<td>0,67</td>
<td>0,44</td>
</tr>
<tr>
<td>Ace_rub</td>
<td>Acer Rubrum</td>
<td>0,3</td>
<td>0,27</td>
</tr>
<tr>
<td>Bet_all</td>
<td>Betula alleghaniensis</td>
<td>0,35</td>
<td>0,25</td>
</tr>
<tr>
<td>Thu_occ</td>
<td>Thuja occidentalis</td>
<td>0,39</td>
<td>0,35</td>
</tr>
<tr>
<td>Ulm_ame</td>
<td>Ulmus americana</td>
<td>0,33</td>
<td></td>
</tr>
<tr>
<td>Aln_inc</td>
<td>Alnus incana subsp. rugosa</td>
<td>0,52</td>
<td>0,52</td>
</tr>
<tr>
<td>Ile_muc</td>
<td>Ilex mucronata</td>
<td>0,31</td>
<td>0,31</td>
</tr>
<tr>
<td>Ile_ver</td>
<td>Ilex verticillata</td>
<td>0,33</td>
<td>0,33</td>
</tr>
<tr>
<td>Pru_vir</td>
<td>Prunus virginiana</td>
<td>0,52</td>
<td>0,3</td>
</tr>
<tr>
<td>Rib_sp</td>
<td>Ribes sp.</td>
<td>0,27</td>
<td>0,3</td>
</tr>
<tr>
<td>Vib_nud</td>
<td>Viburnum nudum var. cassinoides</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>All_pet</td>
<td>Alliaria petiolata</td>
<td>0,48</td>
<td>0,48</td>
</tr>
<tr>
<td>Ath_fil</td>
<td>Athyrium filix-femina</td>
<td>0,36</td>
<td>0,36</td>
</tr>
<tr>
<td>Dry_cri</td>
<td>Dryopteris cristata</td>
<td>0,29</td>
<td>0,29</td>
</tr>
<tr>
<td>Equ_syl</td>
<td>Equisetum sylvaticum</td>
<td>0,45</td>
<td>0,45</td>
</tr>
<tr>
<td>Mat_str</td>
<td>Matteuccia struthiopteris</td>
<td>0,73</td>
<td>0,73</td>
</tr>
<tr>
<td>Osm_cin</td>
<td>Osmundastrum cinnamomeum</td>
<td>0,53</td>
<td>0,53</td>
</tr>
<tr>
<td>Ari_tri</td>
<td>Arisaema triphyllum subsp. triphyllum</td>
<td>0,31</td>
<td>0,31</td>
</tr>
<tr>
<td>Car_tri</td>
<td>Carex trisperma</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Cir_can</td>
<td>Circaea canadensis subsp. canadensis</td>
<td>0,37</td>
<td>0,37</td>
</tr>
<tr>
<td>Cle_vir</td>
<td>Clematis virginiana</td>
<td>0,62</td>
<td>0,62</td>
</tr>
<tr>
<td>Cli_bor</td>
<td>Clintonia borealis</td>
<td>0,37</td>
<td>0,37</td>
</tr>
<tr>
<td>Cop_tri</td>
<td>Coptis trifolia</td>
<td>0,37</td>
<td>0,37</td>
</tr>
<tr>
<td>Cor_can</td>
<td>Cornus canadensis</td>
<td>0,34</td>
<td>0,34</td>
</tr>
<tr>
<td>Doe_umb</td>
<td>Doellingeria umbellata var. umbellata</td>
<td>0,23</td>
<td>0,23</td>
</tr>
<tr>
<td>Eri_phi</td>
<td>Erigeron philadelphicus</td>
<td>0,27</td>
<td>0,27</td>
</tr>
<tr>
<td>Lyc_uni</td>
<td>Lycopus uniflorus</td>
<td>0,27</td>
<td>0,27</td>
</tr>
<tr>
<td>Lys_cil</td>
<td>Lysimachia ciliata</td>
<td>0,37</td>
<td>0,37</td>
</tr>
<tr>
<td>Mai_can</td>
<td>Maianthemum canadense</td>
<td>0,34</td>
<td>0,34</td>
</tr>
<tr>
<td>Oxa_mon</td>
<td>Oxalis montana</td>
<td>0,43</td>
<td>0,43</td>
</tr>
<tr>
<td>Ran_sp</td>
<td>Ranunculus sp.</td>
<td>0,33</td>
<td>0,33</td>
</tr>
<tr>
<td>Rub_rep</td>
<td>Rubus repens</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Tha_pub</td>
<td>Thalictrum pubescens</td>
<td>0,63</td>
<td>0,63</td>
</tr>
<tr>
<td>Tri_bor</td>
<td>Trientalis borealis</td>
<td>0,49</td>
<td>0,49</td>
</tr>
<tr>
<td>Aut_bry</td>
<td>Autres Byophytes</td>
<td>0,46</td>
<td>0,46</td>
</tr>
<tr>
<td>Sph_sp</td>
<td>Sphagnum sp.</td>
<td>0,71</td>
<td>0,71</td>
</tr>
</tbody>
</table>