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Approach
Starting with an ensemble of 40 climate model simulations (Manitoba 

Hydro, 2020), projected changes in precipitation, minimum, and max-

imum temperature were combined with a climatic baseline to gener-

ate future climate scenarios for the 2050s across the Nelson-Churchill 

watershed (1.4 million km2). Future climate scenarios were then used 

to drive WATFLOOD distributed hydrologic models to produce future 

streamflow scenarios. 

Uniquely positioned with Long Term Flow Data (LTFD; 106 year 

hydrologic baseline), the approach was tailored to use LTFD, which is 

fundamental to resource planning studies. WATFLOOD streamflow 

scenarios were used to develop a set of quantile-based future flow 

correction factors (deltas) to assess changes in means, extremes 

and variability. Deltas were applied monthly, seasonally and semi-an-

nually to generate future LTFD scenarios.

To best utilize computational and staff resources, cluster analysis 

was used to select a subset of six future LTFD scenarios that rep-

resent a broad range of energy-production impacts. The subset 

was used to drive a suite of resource planning models to evaluate 

energy and economic impacts of various upgrade options under 

future streamflow scenarios.

Context
Manitoba Hydro provides electricity to over 580,000 custom-

ers throughout Manitoba and exports electricity to whole-

sale markets in Canada and the United States. An average 

of 96 per cent of the electricity it generates annually comes 

from 15 hydroelectric generating stations, primarily on the 

Winnipeg, Saskatchewan and Nelson rivers. 

With guidance from Ouranos, Manitoba Hydro Water Resources 

Engineering and Resource Planning professionals collaborated 

to explore the integration of climate change scenarios into 

existing hydrological modelling and resource planning mod-

elling frameworks. This exercise merged climate science with 

industry practices to explore the topic pragmatically.

Objective

 � Improve upon previous techniques to generate future 

climate change impacted streamflow scenarios.

 � Generate future streamflow scenarios and test how 

these may be used in resource planning.

 � Explore the impact of future streamflow scenarios on a 

potential generating-station upgrade.

 � Investigate the process to integrate future streamflow 

scenarios into resource planning models.



Lessons learned

 � Early collaboration between areas of expertise (climate 

science, hydrology, energy-production modelling) 

was instrumental in project execution and in refining 

the methodology.

 � While many sources of uncertainty exist in hydrologic 

and energy modelling, exploring the scope of impacts 

coming from future climate scenarios can be a valuable 

sensitivity analysis.

 � While climate change impacts on streamflow can affect 

project economics, other factors, such as capital costs, 

energy prices and discount rate were found to be more 

significant factors.

 � Multi-year hydrological drought plays an important role 

in long-term resource planning. Understanding the cli-

mate change impacts on these unique extreme events is 

of interest for future work.
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Results

WATFLOOD hydrologic models were developed and cali-

brated to a range of historical conditions. Due to uncertain-

ties in simulating future regulation, models were configured 

to simulate natural conditions at key flow index locations. 

Adjustment factors from quantile maps, comparing base-

line to future (2050s; 2040-2069) WATFLOOD output, were 

applied to create future LTFD scenarios. Due to the LTFD 

record length, a de-trending/re-trending approach was fol-

lowed, but this step remains an area for further study.

Overall, the ensemble of 40 future LTFD scenarios tend towards 

wetter conditions, but some scenarios indicate decreasing 

flows. Using a screening level energy production model, LTFD 

scenarios were evaluated for changes in mean annual energy 

production. Results show that flow increases generally lead to 

increases in energy production but begin to plateau as flows 

approach powerhouse capacities. A cluster analysis algorithm 

was used to select a sub-set of six scenarios for further anal-

ysis, capturing 97.3% of the ensemble range in future energy 

production change. The sub-set is important since it is com-

putationally and time prohibitive to evaluate all scenarios in a 

detailed resource planning modelling framework.

The sub-set of future LTFD scenarios were run through a 

suite of resource planning tools. LTFD scenarios were first 

run through a coarser resolution system wide production 

model which simulates reservoir operations, electricity 

generation and export revenue using inputs such as a load 

forecast, export price forecast and operational limitations. 

Outputs from this model inform a production model with 

representation of individual generating station unit opera-

tions. For exploratory purposes, climate change impacts are 

considered in isolation of other effects, as only LTFD and 

upgrade options were changed from baseline conditions.

This process allows testing of various generating station 

upgrade options for comparison against one another under 

baseline conditions and with climate change. In this prelim-

inary work, upgrade options were found to be economically 

robust using baseline LTFD and when future climate change 

scenarios were integrated.
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