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Foreword

Integrating Climate Change in the Value  
Assessment of Hydropower Assets

By: Jacob Irving - President, Energy Council 
of Canada

Some aspects of the Canadian energy system 
are not particularly unique or exceptional. 
Others are quite remarkable and world lead-
ing. Canada is for example, a hands-down, 
global frontrunner in hydropower, which is, 
in fact, the country’s single largest power 
generation source. Thanks to hydropower, 
Canada’s overall electricity system is one 
of the least emitting and most renewable 
on earth. 

Canada’s unique and prominent hydro-
power position, however, demands per-
sistent leadership. Canada cannot wait for 
other countries to address challenges and 
opportunities in this field. In fact, many other 
countries look to Canadian examples when 
developing their own waterpower resources.

One of the greatest difficulties facing hydro-
power is complacency. Those who operate 
hydro facilities fully understand its significant 
advantages. However, over time, these same 
advantages risk being simply assumed and 
then taken for granted. It is well understood 
within the industry how waterpower cur-
rently combats climate change and how it 
will be able to continue to do so well into 
the future. To what extent, however, might 
individual hydropower facilities themselves 

be advantaged or disadvantaged by the 
current and future physical disruptions 
climate change is bringing? How well is this 
fully understood?

This hands-on guide prepared by Ouranos 
in partnership with Canadian hydropower 
operators, is built on broader foundational 
work conducted by global organizations such 
as the International Hydropower Association 
(IHA) and the International Coalition on 
Large Dams (ICOLD). It will provide practical 
assistance to operators and relevant stake-
holders, allowing them to properly value 
hydropower features that have, for too long, 
been accepted and yet somehow over-
looked as invaluable. It will assist engineers, 
financiers, lenders, and insurers in making 
better hydropower decisions with greater 
confidence, in the face of climate change. 

Finally, it is not enough anymore for hydro-
power advantages to be understood only 
by those within the industry. This Ouranos 
guide will go a long way toward better com-
municating the specific nature of hydro-
power capability to important, broader, and 
influential audiences. It might also help other 
energy operators and industries to begin 
better understanding and managing their 
own assets and liabilities in the face of cli-
mate change. I am pleased to be offered the 
opportunity to provide the Energy Council 
Canada’s endorsement to this important, 
practical and worthwhile endeavor.
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Introduction

Context

Hydropower asset owners and managers, as well as other stakeholders, make financial and 
economic decisions based on the projected value of their production assets. Amongst other 
factors, the value of hydropower production assets depends upon: their productivity and 
efficiency; environmental and regulatory constraints; operational costs; and investments 
needed to maintain integrity, safety and adaptability. Climate change will have an impact 
on many of these factors; it will not only increase air temperature around the globe, but 
also modify natural processes such as water availability, floods and low flows, ice and frazil 
production, erosion and sediment transport, landslides, forest fires, etc.

To date, many documents have addressed this subject indirectly. The International 
Commission on Large Dams (ICOLD) bulletin Global Climate Change, Dams, Reservoirs and 
Related Water Resources assesses “the role of dams and reservoirs in adapting to the effects 
of global climate change, determine the threats, and potential opportunities, posed by global 
climate change to existing dams and reservoirs, and then recommend measures to mitigate 
against or adapt to the effects of global climate change” and describes “different methods 
and approaches allowing dam and reservoir owners to analyse potential impacts of climate 
change on their water resources systems” (ICOLD, 2016).

The Hydropower Sector Climate Resilience Guide of the International Hydropower 
Association (IHA) “provides a practical and useful approach for identifying, assessing and 
managing climate risks to enhance the climate change resilience of new and existing hydro-
power projects” and “seeks to evolve from the default use of historical data, the assumption 
that hydrologic variability will remain the same over the lifetime of a project and the limited 
knowledge of how best to access, use and interpret climate change modelling and observed 
climate data” (IHA, 2019).

The Climate Risk Informed Decision Analysis (CRIDA) of the Collaborative Water Resources 
Planning for an Uncertain Future “provides a collaborative process for risk-informed decision 
making: effectively assessing, managing, and communicating risks to stakeholders and deci-
sion makers, including successfully avoided risks and residual risks that cannot be avoided, 
quantified, or isolated” (Mendoza et al., 2018).

To the best of our knowledge, however, until now no one has clearly established the specific 
links between hydropower production asset value and climate change physical impacts. 
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Moreover, one of the biggest concerns about climate change impacts involves how the 
evolution in the amount and timing of water resources will affect revenues and therefore 
the value of hydropower production assets. Existing literature provides insufficient guidance 
about incorporating climate change data into asset value, and particularly how to prioritize 
climate change impacts alongside other concerns in a hydroelectric organization, from the 
integration of renewable energy in the grid to energy security issues. The complexity and 
cost of this work must be balanced with its potential outcome and with the other uncertain-
ties related to business decisions.

Objectives

This Guidebook presents guidance for integrating the physical impacts of climate change 
into the valuation of hydropower assets. It has two objectives:

Objective 1
Illustrate potential links between hydropower production asset valuation and climate change 
physical impacts.

Objective 2
Propose methods to integrate climate change data into energy production for value modelling. 
The methods:

	� Apply to all types of business activities/decisions, hydroelectric organizations and 
production asset types;

	� Are reliable for value projections over the next 5, 10, 20, 50 and 100 years;

	� Align with the work methods of hydroelectric organizations;

	� Consider organizational constraints, such as time, resources and budget.

Overview and audience

Figure 1 is an overview of the Guidebook. Section 1 addresses Objective 1 and provides a 
non-technical description of potential ways to integrate climate change physical impacts into 
asset valuation, along with the importance of doing so. For example, teams responsible for 
investment portfolios that include hydropower assets could benefit from this Section.

Sections 2 through 7 respond to Objective 2; they propose methods to integrate climate 
change data into energy production for the purposes of value modeling. Section 2 is intended 
for the hydroelectric sector in general, and presents traditional valuation method, along with 
a valuation method that considers climate change and its uncertainties. Section 3 through 
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7 cover in greater depth the methods to value assets in light of climate change. The sections 
present several possible options, along with their advantages, disadvantages and specific 
challenges, and are intended for technical staff. For example, teams responsible for climate 
change adaptation, water resources management, and energy security could benefit from 
these sections. Appendix J – Case studies provides concrete applications of the methods in 
the hydroelectric sector by the partners of the project.

Figure 1 Overview of the Guidebook and its objectives
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Scope, strengths and limitations

The integration of climate change physical impacts into the valuation of hydropower pro-
duction assets is too broad and complex a subject for any single Guidebook. Moreover, 
an accepted standard for climate change integration has yet to emerge in the literature or 
in practice.

	� To align with the Task Force on Climate-related Financial Disclosures (TCFD) risk cat-
egories (TCFD, 2017), the Guidebook focuses particularly on chronic physical risk and 
opportunities related to climate and hydrology. Transition risk (policy and legal, tech-
nology, markets and reputation) and acute physical risk (event-driven) are addressed 
in Section 1 – Hydropower Asset Valuation and Climate Change Physical Impacts for 
screening purposes only.

	� Climate change will alter multiple natural processes impacting the value of hydropower 
production assets. These impacts will differ by region and time period. Therefore, the 
Guidebook illustrates potential links between hydropower production asset valuation 
and climate change impacts without quantifying them (Section 1).

	� The Guidebook demonstrates multiple ways that valuation methods can incorporate 
climate change impacts (Section 1), yet concentrates specifically on the income-based 
method as it is appropriate for many business activities and is already used widely in 
the hydroelectric industry (Sections 2 through 7).

	� The Guidebook focuses on incorporating climate change data into the modeling chain 
currently used to value assets. It focuses more specifically on hydrology, as it has 
important impacts on asset value.

	� It leaves out the impacts of climate change on electricity costs and demand.

	� It leaves out the impacts of other natural processes on asset value.

	� It leaves out a variety of assumptions and complexities in energy and value model-
ing. Energy and value modeling incorporate many variables, some with significant 
ranges of future uncertainty.

	� The Guidebook is not prescriptive; instead, it presents several options, along with 
their advantages, disadvantages and specific challenges. The Guidebook applies to all 
types of business activities and decisions in hydroelectric organizations. None of the 
options presented is ideal for all organizations; all the options may be adapted to an 
organization’s particular circumstances and constraints. The use of non-prescriptive 
language (e.g. should instead of must) strives to respect organizational constraints.

	� The Guidebook is informed by the science of climate change studies and, in some 
places, identifies scientific limitations. It is also informed by practice through the use 
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of case studies conducted alongside hydroelectric organizations, where climate data 
was integrated into the valuation of their assets (Appendix J – Case Studies).

	� The Guidebook does not provide guidance on climate-informed decision-making (e.g. 
choosing a turbine based on future climate uncertainty). Other documents, such as 
the Hydropower Sector Climate Resilience Guide (IHA, 2019), the CRIDA (Mendoza et 
al., 2018) and the Ouranos Decision-Making Project (Ouranos, 2015) are better suited 
to this purpose.

	� The methods to integrate climate data in hydrology for value modeling are applicable 
internationally, even if the examples and the resources provided herein are mostly 
from North America.

Methods

The Guidebook is the result of an Ouranos-led co-production involving Brookfield Renewable, 
Hydro-Québec, Innergex Renewable Energy Inc., Manitoba Hydro, Ontario Power Generation 
and École de technologie supérieure, with support and funding from Natural Resources 
Canada. All organizations were involved at each stage of the project, from development to 
dissemination of results.

A series of activities informed the production of the Guidebook. A workshop with each 
hydroelectric partner and phone interviews with international stakeholders were conducted 
to better understand their needs and constraints. Peer-reviewed publications, as well as 
gray literature, were consulted. Finally, a case study was developed with each hydroelectric 
partner to identify and test the method to integrate climate data into the valuation of its 
assets (see Appendix J – Case Studies).
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This section provides the practitioner with specific steps to use the Guidebook. The valuation 
of assets is not necessarily a straightforward and linear process, so these steps may have to 
be adjusted the steps to meet the practitioner’s particular circumstances and constraints.

Preliminary steps before the integration of climate data in energy production for value 
modelling include:

1.	 Define project goals and constraints (business decision, time line, budget, assessment 
time period, appetite for change/innovation, etc.).

2.	 Decide which type of value will be used for the business decision (Section 1).

a.	 If fair value and income-based are appropriate, proceed with the next steps.

b.	 If fair value and income-based are not appropriate, the Guidebook is not applicable.

3.	 Scan through Sections 2 through 7 to get an overview of the process.

4.	 Identify members of the project team and the numerical models to be used (Section 2).

5.	 Start managing the change in organizational practices (Section 7.1 – Managing the 
change in organizational practices).

Table 1 summarizes the steps proposed in the Guidebook. There are three groups of steps: 
Selection and development of the baseline(s) (Section 4); Identification and selection of cli-
mate change data (Section 5); and Integration of the baseline(s) and climate change data in 
the modeling chain (Section 6). Table 1 correlates the steps with the relevant sections of 
the Guidebook based on the options selected (presented in the top row) for the baseline(s) 
and climate change data. Mandatory steps are identified with a filled dot ( •• ) and optional 
steps with an empty dot ( •• ). The results of the steps, shown in the last row of the table, are 
simulations based on the baseline(s) and simulations integrating climate change.
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Integrating climate change into the complex but essential task of valuing a hydropower asset can 
represent a significant challenge. To help meet this challenge, Figure 2 illustrates the potential 
links between hydropower asset valuation and climate change physical impacts according to 
specific contexts. This section describes how to use Figure 2 properly. Section 1.1 describes 
relevant valuation contexts and assessment periods. Section 1.2 presents the main types of 
values and associated valuation methods used in the hydroelectric industry, as well as oppor-
tunities to integrate the impacts of climate change. Finally, Section 1.3 lists the climate-sensitive 
subcomponents related to the calculation of asset revenues, costs and useful life. It concludes 
by highlighting the second objective and main focus of the rest of the Guidebook: provide the 
methods to integrate climate change data into energy production for value modeling through 
the income-based method (highlighted by the yellow path on Figure 2).

1.1. Context of valuation

Accurate, current information about asset value supports two main types of business 
activities: decision-making and reporting (Figure 2, Columns 1 and 2). Knowledge of an 
asset’s value can inform decisions about new project development, whether to acquire, 
sell or improve existing assets, as well as about energy contracts and power agreements. 
Asset valuation also supports the disclosure of accurate financial and economic infor-
mation to external entities, such as: regulatory bodies that enforce environmental and 
social regulations; authorities that issue licenses and permits; parties to sale or pur-
chase agreements; lenders and insurers (Benedetti et al., 2018; Blanchet et al., 2018; C. 
Kornelsen et al., 2019; Caron-Périgny et al., 2019; Sagan et al., 2019). In addition, asset 
values are often included in tax returns and shareholder reports. Financial information 
can, in turn, inform decisions about business activities. Asset valuation can also improve 
assessments of risk and resilience.

How frequently an organization evaluates assets varies according to context. An organi-
zation considering an investment might want to know the value of a particular asset at a 
specific point in time, for instance. The need for asset valuation can also be cyclical, such as 
to support financial and tax reporting, or to meet licensing or financing requirements. The 
available time to produce a valuation also varies by context: from several months or years 
when developing a new project; to a few weeks for the due-diligence processes needed to 
acquire an asset. Organizations may also be interested in the valuation of assets for the time 
periods presented in Table 2.
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Table 2 Evaluation periods for hydroelectric business activities (Benedetti et al., 2018; Blanchet et al., 2018; C. 
Kornelsen et al., 2019; Caron-Périgny et al., 2019; Sagan et al., 2019)

Period (years) Business activities
5-15 Financing; acquisition and sale; energy contracts and power agreements

20-30 Financial planning; acquisition and sale; project development; upgrades and adaptation; 
energy contracts and power agreements

50-100 Licenses and permits; environmental and social regulation; development projects;  
upgrades and adaptation; risk and resilience assessment; refurbishment and disposal

1.2. Types of value and opportunities for including climate change

Based on time constraints and nature of business activity, three types of value may be calcu-
lated: fair value, public value and net book value. Section 1.2 presents these types of value 
and associated valuation methods used in the industry, as well as opportunities to include 
climate change impacts.

1.2.1. Fair value

Fair value is the price that would be obtained by selling an asset in an orderly transaction 
between market participants at the measurement date. International Financial Reporting 
Standards (IFRS) set out three valuation methods to assess fair value: cost-based, mar-
ket-based and income-based. In practice, note that multiple methods may be used to develop 
an appropriate level of confidence in a final valuation.

1.2.1.1. Cost-based method

The cost-based method offers little possibility of incorporating climate change impacts. This 
method aims to quantify replacement cost: the amount of money required to replace or 
replicate the service capacity of an asset. It ignores any revenue stream generated by the 
asset and focuses instead mostly on construction costs. Eventually, construction costs could 
integrate climate change as engineering practices, socio-environmental factors and input 
prices adapt to climate change. Figure 2 uses a red symbol in Column 5 to highlight the 
difficulty of incorporating climate change impacts into assessment of replacement costs.

1.2.1.2. Market-based method

The market-based method offers little possibility of incorporating climate change impacts. 
This method uses prices and other information related to transactions involving identical 
or comparable assets. Figure 2 uses a red symbol in Column 5 to highlight that the value 
of assets currently traded on the market may not yet incorporate climate change impacts, 
especially if these impacts can be expected to decrease the organization’s overall value. 
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Another limitation of this method is that hydropower facilities are not frequently put on the 
market, making it exceedingly difficult to calculate accurate valuations. Until integrating cli-
mate change in asset market valuation becomes common practice, market-based methods 
will not be useful to factor for climate change.

1.2.1.3. Income-based method

The income-based method provides opportunities to value climate change impacts on pro-
jected revenues, costs and asset’s useful life, unlike the two previous methods. This method 
considers the revenues generated and costs incurred during an asset’s useful life to calculate 
a single, current, discounted amount known as the net present value (NPV). Organizations 
factor NPV into various decision-making and disclosure metrics, such as internal rate of 
return, revenue requirement or debt-to-service-coverage ratio. Section 1.3 focuses on 
linking climate change impacts to revenues, costs and asset’s useful life.

1.2.2. Public value

For the purpose of the Guidebook, public value is defined as the net benefits an asset provides 
to individuals, communities and companies. This differs from fair value, which considers only 
social and environmental costs and benefits in particular contexts: when business income is 
affected; when imposed by regulators; or when integrated into a social responsibility frame-
work. Some of these costs and benefits are difficult to quantify, especially when they are not 
marketable commodities or when they affect people not directly involved with the asset. 
Socio-economic evaluation methods are helpful for considering non-marketable aspects 
such as public safety, the social benefits of energy reliability, and environmental, historical 
and cultural impacts. For example, an assessment of risk and resilience may consider the 
impact that a potential flood could have on public safety. Regulatory bodies may require a 
socio-economic valuation of environmental impacts for license renewal, or a socio-economic 
valuation of a population relocation associated with a proposed development project. Climate 
change impacts could be incorporated into the evaluation of such non-marketable aspects 
and be considered by regulatory bodies, but this is beyond the scope of the Guidebook 
(blue symbol, Column 5, Figure 2). Section 1.3 explores climate-sensitive subcomponents of 
marketable revenues, costs and asset’s useful life.
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1.2.3. Net book value

By considering the influence of climate change on a hydropower asset’s useful life, net book 
value could integrate climate change impacts. Net book value is the amount an organization 
records as the asset’s value for accounting purposes, mainly for tax and financial reporting. It 
is calculated as an asset’s original cost minus accumulated depreciation, depletion, impairment 
and amortization. Depreciation is calculated using the straight-line depreciation method over the 
useful life of the asset. Since generating facilities, dams and reservoirs have long lifespans – 40 to 
125 years – climate change has the potential to influence their capacity over the long term. This is 
addressed in Section 1.3. The original cost includes expenditures directly attributable to acqui-
sition, such as the costs of materials, contracted services, direct labour, interest and borrowing. 
Column 5 of Figure 2 uses a red symbol because these past expenditures – original cost – will 
not have fully incorporated climate change impacts, especially for older assets.

1.3. Impacts of climate change

The impacts of climate change on each natural process differ regionally, which makes it impossi-
ble to generalize their influence on the value of hydropower assets. For example, temperatures 
are expected to increase faster in northern latitudes than in equatorial latitudes. Another exam-
ple is that some regions will experience increased precipitation, while others will experience 
decreased precipitation. While climate change is often considered from a global perspective, 
such as a global increase in average temperature of 4.9°C (Moss et al., 2010) by the end of the 
century (according to the worst-case emissions scenario), each natural process must be evalu-
ated regionally to fully understand the impacts of climate change on asset values. Table 3 can 
help with such evaluations; it illustrates the potential links between climate-sensitive subcom-
ponents (Column 6 of Figure 2), natural processes (Column 7 of Figure 2) and climate change.

1.3.1. Impacts of climate change on revenues

According to the type of asset – run-of-river or reservoir – and the scale of the valuation task 
– individual asset, hydropower fleet or portfolio – estimation of future revenues involves pro-
jections of future provision of energy, power and ancillary services. For example, the storage 
capacity of a reservoir may enable the creation of additional value through power generation and 
ancillary grid services. Accurate quantification of a hydropower asset’s potential revenues must 
account for the full range of hydropower products, balanced with expected future electricity 
demand. Projections of electricity demand are particularly important when estimating the future 
revenues of plants with the operational flexibility to produce electricity when demand is high 
(peak). As shown in Table 3, impacts of climate change on hydrology and air temperature can be 
assessed to investigate impacts on regional supply and demand, and thus, on future revenues.
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Issues related to climate change across the economy also inspire changes in market drivers 
and incentives, affecting the future demand for hydroelectricity. For instance, changes in 
public policy, consumption patterns and market trends for renewable energy will all affect 
future revenues. Since general concerns rather than specific natural process drive these 
changes, Column 6 of Figure 2 uses a blue symbol to indicate that market drivers and incen-
tives are beyond the scope of this Guidebook.

1.3.2. Impacts of climate change on costs

Costs sensitive to climate change are divided into three subcomponents (adaptation, inaction 
and external). Cost of adaptation is defined as the cost for an organization to manage a risk 
or to take advantage of an opportunity associated with climate change’s modification of one 
or more natural processes (listed in Column 7 of Figure 2). Cost of inaction refers to the addi-
tional expenses incurred to reduce damages or losses due to the failure to adapt to, or take 
advantage of, such modifications. While adaptation strategies incur implementation costs, 
a growing body of evidence indicates that inaction is more expensive (Canadian Electricity 
Association, 2016). Appendix C of the Hydropower Sector Climate Resilience Guide (IHA, 
2019) documents a range of potential climate change impacts on project components that 
can help to evaluate future costs.

External costs are those imposed by a third party and that are beyond the control of the 
asset owner. They are independent of an organization’s efforts to adapt, and include costs 
related to socio-environmental constraints, insurance, water licenses, interest rates, etc. 
Table 3 details the potential impacts of climate change on external costs.

1.3.3. Impacts of climate change on an asset’s useful life

Hydropower plants are frequently cited as a type of infrastructure particularly vulnerable to 
climate change impacts (Boyle et al., 2013; Canadian Electricity Association, 2016). Extreme 
short-term events such as large storms, along with incremental climate change, can affect 
an asset’s functional life by exceeding the design criteria used for its construction, therefore 
damaging the structure, or by altering maintenance practices. Foundation materials, for 
instance, may turn to be inadequate for future conditions. Table 3 links natural processes 
and the potential impacts of climate change on an asset’s useful life.
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Table 3 Main impacts of climate change on the value subcomponents of hydropower assets

Climate-Sensitive 
Subcomponents

Natural 
Process Climate Change Impacts Reference

Revenues

Energy

Hydrology

Changes in inflow volumes, and 
seasonal/monthly/daily patterns can 
influence the amount and timing of 
energy production.

(Arsenault et al., 2013; Haguma et 
al., 2017; Kao et al., 2015; Madani 
and Lund, 2010; Marie Minville et 
al., 2009)

Power

Change in inflow volumes and 
seasonal/monthly patterns can 
influence the availability of water for 
power generation.

(Caron-Périgny et al., 2019)

Ancillary services
Change in inflow volumes and sea-
sonal/monthly patterns can influence 
the availability of water for grid support.

(Benedetti et al., 2018; Forrest  
et al., 2018)

Electricity demand Air temperature

Increasing air temperatures modify 
energy demand for cooling in summer 
and heating in winter, and modify daily 
demand profile.

(Isaac and Van Vuuren, 2009; 
Jaglom et al., 2014; Lafrance et 
al., 2016; Manitoba Hydro, 2015; 
Mideksa and Kallbekken, 2010)

Costs

Costs of adaptation All

Impacts of climate change on project 
components requiring structural and 
functional adaptation measures. Each 
adaptation measure can represent a 
future cost.

Appendix C of the Hydropower 
Sector Climate Resilience Guide 
(C. Kornelsen et al., 2019; Caron-
Périgny et al., 2019)

Costs of inaction All

Inaction – failing to implement adap-
tation measures – can lead to future 
costs due to climate change impacts 
on project components.

Appendix C of the Hydropower 
Sector Climate Resilience Guide 
(IHA, 2019)

External costs

Hydrology

Change in hydrology can influence 
socio-environmental constraints 
on regulated flow and increase or 
decrease production costs.

(Caron-Périgny et al., 2019)

In regions where the risk of flood 
increases, potential loss of active 
storage due to flood-control 
measures could decrease energy 
production and power potential.

(IHA, 2019)

Change in inflow volumes and water 
availability can increase/decrease 
costs of water licenses.

(Benedetti et al., 2018; Blanchet  
et al., 2018)

Change in inflow volume and water 
availability can influence lenders’ 
perception of risks and increase 
interest rates.

(Benedetti et al., 2018; Blanchet  
et al., 2018)

Extreme events
Change in extreme events intensity 
and frequency can increase insur-
ance premiums.

(Benedetti et al., 2018; Blanchet et 
al., 2018; Caron-Périgny et al., 2019)

Evaluation period and depreciation

Asset’s useful life

Hydrology Change in the hydrologic cycle can 
change dam-design criteria.

(Groulx et al., 2019; Sagan  
et al., 2019)

Freeze-thaw 
cycle

Change in freeze-thaw cycle can influ-
ence the durability of an asset’s foun-
dation materials and components.

(Groulx et al., 2019)

Extreme events
Change in intensity and frequency of 
extreme events can increase risk of 
breach and threaten asset integrity.

(Caron-Périgny et al., 2019;  
Sagan et al., 2019)
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1.3.4. Need for an effective method

The rest of the Guidebook focus on its second objective: provide the methods to integrate 
climate change data into energy production for value modeling through the income-based 
method, as per the yellow path in Figure 2. A method is still needed to integrate climate 
change impacts into the other climate-sensitive subcomponents identified: provision of 
power and ancillary services, electricity demand, cost of action, cost of inaction, external 
costs and the useful life of assets. The amount of scientific knowledge about the impacts of 
natural process varies by subcomponent, however. Considerable research exists about the 
influence of air temperature on electricity demand (Isaac and Van Vuuren, 2009; Jaglom et 
al., 2014; Lafrance et al., 2016; Manitoba Hydro, 2015; Mideksa and Kallbekken, 2010), for 
instance, while relatively little research has been done into the impacts of climate change on 
landslides and their associated costs (Cloutier et al., 2016). Foremost is the need to clarify 
which natural processes are likely to trigger changes in asset value. This knowledge will sup-
port the development of reliable methods for the integration of climate data.
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2Methods for Income-
Based Valuation 

and Uncertainties
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The following section presents an overview of the approach to evaluate an asset using the income-
based method and focuses specifically on climate and hydrology. Section 2.1 looks at the tradi-
tional method of asset valuation; Section 2.2 explains the method to integrate climate change 
using the income-based approach; and Section 2.3 considers the associated uncertainties.

2.1. Traditional valuation method

The traditional method relies on a hydrologic baseline consisting of streamflow observations on 
site, transposed from another site or of a reconstruction by water balance (inflow). It is tradition-
ally considered as the best representation of the future. As shown in Figure 3, the hydrologic 
baseline starts the modeling chain and feeds an energy model to produce an energy projection. 
The projection is a time series at the daily, monthly or seasonal time step (for more information 
on energy models, refer to Stoll et al., (2017)). The energy model takes into account asset charac-
teristics, operational management rules and constraints, as well as energy demand, to calculate 
the energy projection. Statistics such the long-term average are computed from the daily energy 
projection and are inputs to produce a value projection with the value model. The value model 
can also take as input the median, low and high percentiles of annual and monthly production.

Figure 3 Typical modelling chain for the traditional valuation method

Figure 4 illustrates the traditional valuation practice. In this example, the hydrologic baseline 
consists of 30 years of past streamflow data (from 1986 to 2015). The hydrologic baseline is 
copied three times to produce a 90-year scenario from 2016 to 2105. Energy and revenues 
based on this scenario are computed for the future period (2016 to 2105) with simplistic 
model assumptions for illustration purpose only.

Note that some business activities will not necessarily rely on the complete modeling chain 
described previously. For example, when organizations negotiate energy contracts and 
agreements, they may be interested only in annual energy. Therefore, they will use the 
hydrologic baseline to feed the energy model and produce an energy projection to compute 
annual energy, without using a value model at the end of the modeling chain.
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THE TRADITIONAL METHOD AND CLIMATE CHANGE

As climate change is already underway and already has had an impact on the hydrologic baseline, the 

traditional method cannot be deemed a valuation method without climate change: by design, it intrinsi-

cally considers the changes that have already occurred. However, the method needs to be updated to 

take into account future changes that differ from recent ones, as the hydrologic baseline may no longer 

be the best representation of the future.

A)

B)

C)

Figure 4 Example of the traditional valuation method; panel A) shows inflows, B) energy and C) revenues.
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2.2. Valuation method with climate change

To include climate change in asset valuation, one needs to revisit the hypothesis that the 
hydrologic baseline (past hydrology) provides the best representation of the future. Solely 
considering the hydrologic baseline may no longer be the best option. The hydrologic baseline 
should be considered in conjunction with hydrologic simulations informed by greenhouse 
gas and aerosol emissions scenarios, as well as climatic simulations. Figure  5 describes 
the modeling chain fed with emissions scenarios leading to a valuation incorporating cli-
mate change.

Figure 5 Typical modeling chain for valuation with climate change

One of the main challenges of the valuation with climate change is that the practitioner 
must combine two sets of simulations: one based on the baseline (black line in Figure 6); 
and one based on climate change (gray lines in Figure 6). Both sets feature interesting 
and useful information; the next sections of this Guidebook provide guidance on how to 
use this information.

As other documents better explain many of the concepts presented in this section, the 
Guidebook provides short summaries along with references to supplementary materials. 
The Guidebook On Climate Scenarios – Using climate information to guide adaptation research 
and decisions by Charron (2016), is recommended as an entry point for understanding scien-
tifically sound climatic scenarios (the beginning of the modeling chain).

Emissions scenarios: As shown on Figure  5, the method with climate change starts with 
greenhouse gas and aerosol emissions scenarios. Numerous scenarios exist to represent the 
range of future emissions based on variables such as population growth, economic growth, gov-
ernment policies, etc. The Integrated Assessment Modelling Consortium (IAMC) develops these 
emissions scenarios at the behest of the Intergovernmental Panel on Climate Change (IPCC) and 
updates them every few years to reflect socio-economic and scientific developments. When this 
Guidebook was published, Representative Concentration Pathways (RCPs – Moss et al., 2010) 
were the most recent scenarios. The next family of scenarios is called Shared Socioeconomic 
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Pathways (SSP) (Sanderson et al., 2018; O’Neill et al., 2014; Hausfather, 2018).

	� Climate models: Several climate-modeling centers around the world join forces in 
the Coupled Model Intercomparison Project (CMIP) and use the IPCC’s emissions 
scenarios in climate models to produce climatic projections of the future climate in 
addition to simulations of the recent past, going back to 1850. The climatic projections 
of CMIP5, the fifth and previous CMIP experiment, come from more than 20 differ-
ent models and are available for the years 2005 through 2100 (Taylor et al., 2012). 
They typically include many variables, such as daily temperature, precipitation, runoff, 
relative humidity, wind and many others. New climatic simulations are made avail-
able periodically to take into account new emissions scenarios and climate models 
upgrades. The CMIP6 climate projections, which start in 2015 until 2100, are now 
complete and available, although, at the time of publication of this Guidebook, there 
are still many analyzes to be done. 

	� Data transformation method: Models (climate models, as well as the other models 
in the modeling chain) are by nature a simplification and therefore produce imperfect 
simulations (see the Box Need for Data Transformation Methods at the end of this sub-
section). Therefore transformation methods may be required on model data at various 
points during the modeling chain, as the pink dotted chevron in Figure 5 illustrates. 
Section 3 presents the most common data transformation methods. Downscaling 
techniques may also be required, specifically for climatic simulations. This Guidebook 
does not address these techniques, as they are extensively covered in many other 
documents (e.g. Maraun and Widmann, 2018).

	� Climatic simulations: At this point in the modeling chain, the practitioner has two 
options for climatic simulations, each with advantages in particular circumstances. 
Option one: use climatic simulations based on climate models and the appropriate 
data transformation method. Option two: use a weather generator that considers 
trends in climate models to produce climatic simulations. A weather generator is a 
numerical model that produces synthetic climatic simulations based on the statistical 
characteristics of observed weather.

	� Hydrologic model: The climatic simulations are used to drive a hydrologic model to 
produce hydrologic simulations. The hydrologic model, after proper calibration and 
validation with observations (see appendices F and G), is typically driven with tem-
perature and precipitation data taken from the climatic simulations, although more 
complex models might require other climate variables. Different types of hydrologic 
modeling exist for different purposes; in the valuation process, continuous hydrologic 
modeling is needed (Beven, 2011; Hingray et al., 2015), rather than design flood mod-
eling, which is mainly used for infrastructure design.
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	� Energy and value model: The hydrologic simulations are then fed into the energy 
model to create energy simulations. The same statistics as in the traditional method 
are used to drive the valuation model.

Figure 6 shows an example of the implementation of the modeling chain with climate change, 
where the hydrologic baseline is transformed into energy and eventually revenues. They are 
referred to as simulations based on the baseline – simulations made with a model or a series 
of models and fed by the baseline. These simulations are available only for the years of the 
baseline. Figure 6 also shows hydrologic, energy and revenue simulations based on emis-
sions scenarios and climatic simulations. These are referred to as simulations integrating 
climate change. These simulations are available for both the past and the future, as they rely 
on climate models/weather generators rather than solely on the baseline.

Figure  6 also illustrates a main challenge of the valuation with climate change. In this 
example, the hydrologic, energy and revenue simulations integrating climate change have 
a negative bias. The bias is more obvious in the energy and revenue simulations, where the 
simulation based on the baseline (in blue) is located above the ensemble of simulations 
integrating climate change (in gray). In this example, the bias originates from the hydrologic 
model, spreads through the rest of the modeling chain and is problematic for a comparison 
between the traditional valuation method and the valuation method with climate change. 
It can also trigger a loss of confidence in the valuation method with climate change.

Finally, one of the main differences between the traditional valuation method and the val-
uation method with climate change is the number of climatic/hydrologic time series that 
must be used. When working with the traditional method, there is usually a limited set of 
climatic/hydrologic time series to work with (see Figure 4 of Section 2.1). Exceptions occur 
when organizations work with stochastic and resampling approaches. When working with 
climate change, the ensemble approach is typically used to account for uncertainties related 
to unknown future events and processes (see Section 2.3 – Source of uncertainty). The 
ensemble approach consists of using several options and combinations at each step of 
the modeling chain (emissions scenarios, climate models, post-processing techniques, etc). 
Climate change studies can therefore easily become data-intensive projects; the practitioner 
will have to deal with several emissions scenarios, possibly tens of Global Climate Model 
(GCM) results for tens of watersheds (e.g. Guay, Minville and Braun, 2015). Figure 6 presents 
only three simulations, although generally many others are available. Uncertainties in the 
energy simulations and the revenue simulations can also be considered and integrated in the 
ensemble approach. The next section discusses the importance of the ensemble approach 
and the uncertainties of the value modeling chain. 



Methods for Income-Based Valuation and Uncertainties  | 40 

A)

B)

C)

Figure  6 Example of the valuation with climate change along with past inflows, energy and revenue.  
Panel A) shows inflows, B) energy and C) revenues.
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NEED FOR DATA TRANSFORMATION METHODS

In an ideal world, the outputs of the climate, hydrologic, energy and valuation models would create 

an accurate simulation of real-world physics. In reality, however, a model is an abstraction of reality – 

a plausible reality. Real-world physics are simplified into several numerical equations. Therefore, the 

model is a simplification of the system, and produces imperfect and biased simulations.

Figure  7 helps explain model bias and the need for data transformation methods. The hydrologic 

baseline is presented, along with hydrologic simulations fed with raw climatic simulations (direct output 

from the climate models) and bias-corrected climatic simulations (output from climate models with a 

data transformation applied) over concomitant years. The hydrologic simulations fed with raw climatic 

simulations show major biases (overestimation of flows in this case) that lead to problems later in the 

modeling chain, while bias-corrected simulations show good agreement with the hydrologic baseline.

Figure 7 Annual hydrograph of hydrologic baseline and simulations. The figure presents flow over time of hy-
drologic baseline (black), hydrologic simulations produced with raw climatic simulations (gray) and hydrologic 
simulations fed with bias-corrected climatic simulations (blue) over concomitant years. This example demon-
strates that the shape of the black line is well represented by the shape of the gray line, but that the gray line 
is biased high. Once the bias is removed, the model projection (blue) is fairly reprensative of observations.
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2.3. Sources of Uncertainty

There is scientific consensus that the global climate is changing and will continue to change in 
the future. Despite the certainty of climate change, uncertainties exist about the magnitude 
of future greenhouse gas and aerosol emissions, the climate system’s response to these 
emissions and how climate changes translate to hydrologic changes. These uncertainties 
compound with each step of the modeling chain in what Jones (2000) termed the “cascade of 
uncertainty.” The result can be a significant amount of inherent uncertainty. This uncertainty 
exists whether or not it is characterized and considered by the practitioner.

Although decisions are easier to make if the decision-making process ignores some uncer-
tainty, this does not guarantee good decisions. For instance, by considering only one emis-
sions scenario or only a few GCMs, the practitioner can miss what will actually happen in 
the future and the associated consequences. The practitioner is less likely to miss what will 
actually happen in the future by exploring all possible combination of emissions scenarios, 
models and methods.

The ensemble approach (combination of emissions scenarios, models and methods) is used 
to evaluate the cascade of uncertainty. However, this approach can become challenging 
because the number of combinations rises quickly and their integration in the modeling 
chain can become unrealistic because of constraints such as computational time.

Understanding the uncertainty inherent in each step of the modeling chain is the first step in 
the ensemble approach: more resources can be allocated to characterize the biggest sources 
of uncertainty. Section 2.3.1 defines the sources of uncertainty in the modeling chain, while 
Section 2.3.2 considers the relative magnitude of various sources of uncertainty. The uncer-
tainty related to some of the methods presented in Section 3 is also presented here for 
the sake of clarity. Other strategies to work with the ensemble approach are provided in 
Appendix I – Best and good practices for the ensemble approach and Appendix C – GCM 
selection methods.

2.3.1. What are the sources of uncertainty?

Table 4 presents the sources of uncertainty in the modeling chain, as well as approaches to 
quantifying them (see Section 2.3.2 for relative magnitudes).
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Table 4 Sources of uncertainty at each step of the modeling chain

Item What are the sources of uncertainty? How is uncertainty quantified?
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	� Greenhouse gas emissions scenarios reflect our current 
understanding and knowledge of population, economic 
growth, conflict, technology and international policies 
(IPCC, 2013).
These factors are significant sources of uncertainty; for 
example, mitigation policies can play an important role in 
regulating anthropogenic emissions (Charron, 2016) and 
it is challenging to project the emergence of technology 
that does not yet exist.

	� The IPCC has defined several emissions scenarios 
spanning a range, to reflect alternative visions of 
how the future may unfold (IPCC, 2013).

	� The uncertainty from emissions scenarios 
is typically quantified by the range of results 
obtained across all scenarios.
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	� GCMs divide the earth into 3D cells and use equations 
to approximate reality (IPCC, 2013). Increasingly more 
processes are added as scientific understanding advances, 
but still many approximations and assumptions are neces-
sary because the earth is too complex and chaotic to fully 
represent all aspects scientifically (Wilby, 2010). This creates 
a significant source of uncertainty.

	� In addition, climate models have to parameterize (simplify) 
processes that occur at small spatial and temporal scales. 
This creates an additional source of uncertainty; for example, 
GCMs do not explicitly model clouds (Sillmann et al., 2017).

	� CMIP regroups dozens of GCMs from centers 
around the world. These models include 
various processes and parameterizations. 
The uncertainty from climate models is typically 
approximated by the range of results obtained 
from CMIP (IPCC, 2013).
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	� Even if scientists perfectly understood the earth system 
and computing capabilities were unlimited, there would still 
be uncertainty in the climate system simulations due to its 
chaotic behavior. This behavior creates natural variability 
(Deser, Knutti, et al., 2012; Ignazio Giuntoli et al., 2018).

	� Natural variability contributes uncertainty to climate pro-
jections; for example, climate trends on decadal timescales 
can have opposite trends to that of overall climate changes 
(Charron, 2016;Deser, Phillips, et al., 2012; Evin et al., 2019).

	� Natural variability in CMIP ensembles is repre-
sented by the diversity of initial conditions in 
the different models (Deser et al., 2014; Hawkins 
et al., 2016).

	� Some modeling centers have run single climate 
models multiple times with slight perturbations 
in the initial conditions (e.g. by changing the start 
date of the simulation, see Charron, 2016). This 
type of large ensemble can be used to estimate 
the uncertainty resulting from the chaotic nature 
of the climate (Ignazio Giuntoli et al., 2018).
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	� Climate models require post-processing to remove model 
bias (IPCC, 2013). Climate impact analyses can also require 
downscaling to convert from the scale of the model grid cell 
to that of the impact model. These methods make assump-
tions about the distribution of the data and about aspects 
of the climate that will not change in the future (Maraun 
and Widmann, 2018), and some of these assumptions 
are questionable.

	� Post-processing methods make use of observed data. 
However, there are uncertainties related to observations 
due to: changes in climate-station locations, observation 
and recording practices, site characteristics and sampling 
regimes; issues with interpolation; and biases toward low-
er-elevation, urban or coastal locations (Wilby, 2010)).

	� Uncertainty from post-processing can be 
assessed by comparing different methods, or by 
testing the method against multiple observational 
datasets (Maraun and Widmann, 2018; see 
Appendix E – Validation of climate products).

	� Uncertainty from observational datasets is best 
assessed by comparing projections that have 
used different datasets (e.g. Gao et al., 2019), 
or by comparing the datasets directly (see 
Appendix E – Validation of climate products).
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	� It is in practice impossible to measure everything we would 
like to know about the hydrologic system (mostly due to 
spatial variations and limitations of measurement techniques 
(Pechlivanidis et al., 2011). Furthermore, it is difficult to link 
physical properties that can be measured at the field scale 
with parametric values that represent the overall behavior 
of the land (Wilby, 2010). Therefore, all hydrologic models 
remain to some extent conceptual and empirical, and rely 
heavily on parameters and calibration (Coron et al., 2012). 
This empirical nature can sometimes mean that a model 
that shows a good performance in the current climate might 
not perform well in a future climate (Lofgren et al., 2011).

	� Uncertainties from hydrologic models can be subdivided 
into structural, parameter and observation uncertainties 
(Chen, Brissette, Poulin, et al., 2011; Motavita et al., 2019; 
Schaefli, 2015).

	� Uncertainty from hydrologic models is estimated 
either by testing the model against observational 
datasets, or by comparing hydrologic projections 
obtained from different models (Pechlivanidis 
et al., 2011). The latter method enables testing 
for equifinality – when several model structures 
or parameter sets produce the same results in 
the calibration (flows in the case of hydrology), 
but may differ in their ability to project changes 
(Her et al., 2019; Poulin et al., 2011).
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Item What are the sources of uncertainty? How is uncertainty quantified?
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	� Hydropower operations are by nature complex to model 
compared to other electricity generators (Stoll et al., 2017) 
because of three main reasons:

	� Lack of data regarding system characteristics
	� Computational time constraints
	� Limited ability to account for all applicable constraints 

(environmental, operational and regulatory constraints).
	� These sources of complexity contribute in turn to uncer-

tainty in future energy projections: applicable characteristics 
and constraints are difficult to account for and they may 
change in the future. For example, the following parameters 
may change:

	� Generation system characteristics and availability (forced 
and planned outages of units, transformers and lines)

	� Environmental constraints (maximum reservoir elevation, 
discharge limits, etc.)

	� Regulatory constraints.

	� Model accuracy can be tested against 
past generation.

	� The impact of changing constraints and availabil-
ity of components of the generation system can 
be simulated
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	� Along with the market’s volatility and availability of informa-
tion, sources of uncertainty in asset valuation stems from 
assumptions based on a combination of future market 
conditions, for example:

	� Energy prices and tariffs
	� Investment costs
	� Financial life of project
	� Inflation
	� Taxes, subsidies and policies.

	� Uncertainty also resides in estimation of key parameters 
such as discount rate and weighted average cost of capital 
(WACC) based on:

	� Risk profile of the asset
	� Capital structure
	� Cost of capital.

	� Uncertainty from asset valuation can be assessed 
with partial sensitivity analysis by testing the 
impact each assumption has on the overall 
valuation (Malovic et al., 2015).

	� Probabilistic approaches like Monte Carlo simula-
tions (Haguma et al., 2017) and scenario analysis 
(Manitoba Hydro, 2013) consider a combination 
of future conditions simultaneously. Valuation 
results are associated with statistical degree 
of confidence.

	� Real option analysis assesses the option of 
management flexibility of an investment under 
evolving market uncertainty (Kim et al., 2017). 
It estimates the volatility of a project’s value.

Note that although the conventional approach to quantifying uncertainty, using an ensem-
ble of simulations and partitioning the variance into different components (e.g. Giuntoli et 
al., 2018), is an informative approach, it may underestimate the total uncertainty due to an 
insufficient sampling of the possible range of model and scenario results (Bosshard et al., 
2013; Schaefli, 2015).
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2.3.2. How do the sources of uncertainty for streamflow projections compare?

This section focuses on the importance of each source of uncertainty for streamflow projec-
tions (i.e. how much does each source of uncertainty lead to variations in streamflow projec-
tions). Note that uncertainties relating to energy and valuation models are not considered 
in this section. Climate and hydrologic models are presented first because they are typically 
the largest sources of uncertainty for streamflow projections. A short section at the end 
addresses other hydroclimatic variables and the time-dependence of relative uncertainty.

Climate models and hydrologic models

The greatest source of uncertainty in the modeling chain is generally considered to be the climate 
model (Bastola et al., 2011; De Niel et al., 2019; Feng, 2018; Kay et al., 2009; Prudhomme and 
Davies, 2009; Vetter et al., 2017; Wilby and Harris, 2006). However, hydrologic model uncertainty 
can be greater in seasons and regions dominated by processes that pose a greater challenge 
for hydrologic modeling, such as snow and ice processes (Bosshard et al., 2013; I Giuntoli et al., 
2015; Troin et al., 2018; Vidal et al., 2016), soil moisture and groundwater processes (Her et al., 
2019), and evapotranspiration processes (Hattermann et al., 2018; Sellami et al., 2016).

Emissions scenarios

Emissions scenarios are highly uncertain; for example, for CMIP5, the business-as-usual sce-
nario (RCP 8.5) has an equivalent CO2 concentration of more than 1,370 ppm, compared to 
approximately 650 ppm for the moderate scenario (RCP 4.5; Charron, 2016). The range of 
projections that corresponds to each emissions scenario can vary. Shen et al., (2018) showed 
that the hydrologic uncertainty for a high emissions scenario (RCP 8.5) was larger than that 
under a relatively low emissions scenario (RCP 4.5). This is because the modeling chain has 
a greater range of responses to the high emissions scenario. Nonetheless, a number of 
studies have found that, for streamflow projections, the contribution of RCPs to uncertainty 
is small compared to the other uncertainty sources (during the time horizons analyzed), 
due to the predominance of other sources of uncertainty (Arnell and Gosling, 2013; Chen, 
Brissette, and Leconte, 2011; Gao et al., 2019; Ignazio Giuntoli et al., 2018; Wada et al., 2013).
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Natural variability

It is difficult to draw conclusions about the contribution of natural variability to uncertainty 
in streamflow projections because only a few relevant studies have been completed and 
they yield contradictory results. Chen et al., (2011) found that GCM initial conditions (used to 
represent natural variability) were a major contributor to uncertainty for certain hydrologic 
variables. In contrast, Giuntoli et al., (2018) found that natural variability was not a large 
contributor to uncertainty. However, natural variability is reduced in the Giuntoli et al. (2018) 
study because they used decadal means.

Another difficulty in comparing different studies that assess degrees of uncertainty from 
natural variability is that the magnitude of uncertainty depends on several factors.

	� Temporal scale. Natural variability uncertainty tends to be larger, and the time of 
emergence longer, for smaller temporal scales (Hosseinzadehtalaei et al., 2017; Van 
Uytven and Willems, 2018; Vidal et al., 2016). Time of emergence refers to the time for 
the climate change signal to emerge from the noise of natural variability.

	� Spatial scale. Variability tends to be larger at small spatial scales. For example, regional 
projections tend to have larger natural variability than global means, and in some 
cases, spatial aggregation removes variability (Evin et al., 2019; Fischer et al., 2013).

	� Geography and climate. For example, the relative uncertainty for temperature projec-
tions is lower at the poles, due to a stronger temperature signal (Fischer et al., 2013).

	� Hydrologic variable. The relative magnitude of uncertainty from natural variability is 
different depending on the hydrologic variable (Chen, Brissette, Poulin, et al., 2011; 
Hawkins and Sutton, 2009; Vidal et al., 2016).

Natural variability may change in the future as atmospheric dynamics change. For example, 
different oscillations may behave differently in the future. Some studies have inferred that 
inter-annual temperature variability may decrease in northern latitudes based on changes 
to projection ensemble spread (Carter et al., 2007; Hawkins et al., 2016). Nonetheless, most 
studies suggest that the total amount of natural variability will remain fairly constant in the 
future (e.g. Chen, Brissette and Leconte, 2011; Giuntoli et al., 2018).
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Post-processing

Although climate and hydrologic models are the dominant contributors to uncertainty in the 
modeling chain, the uncertainty contribution from post-processing (or downscaling/bias cor-
recting) has also been found to comprise a large fraction of the uncertainty when projecting 
high and extreme flows (Chen, Brissette, and Leconte, 2011; De Niel et al., 2019; Mandal and 
Simonovic, 2017). Gao et al., (2019) found that uncertainty of average monthly and annual 
streamflow due to the bias-correction data source is greater than that of emissions scenarios 
and less than that of GCMs for the time horizons analzed.

Time dependence

The relative magnitude of the sources of uncertainty described above varies with the projec-
tion horizon (Giuntoli et al., 2018; Figure 8). For instance, as the century progresses and the 
lead time increases, the hydrologic impacts that are driven by changes in emissions scenarios 
become increasingly important compared to the noise of natural variability (Ignazio Giuntoli 
et al., 2018). Conversely, over shorter lead times of a few decades, the climate change signal 
may not yet have “emerged” from the noise of natural variability (Charron, 2016). The time of 
emergence depends on the strength of the climate change signal (e.g. which can be stronger 
for certain hydrologic variables), as well as on the magnitude of natural variability (e.g. which 
depends on temporal scale, spatial scale, season, climate, etc.; Bosshard et al., 2013).

Plotting the uncertainty fraction attributable to different sources over time is one way to 
show how uncertainties change depending on the projection horizon. For example, Giuntoli 
et al., (2018) examined how the relative magnitude (or “partitioning”) of uncertainty from the 
ISIMIP (Inter-Sectoral Impact Model Intercomparison Project) runoff projections for the U.S. 
evolves throughout the 21st Century (Figure 8). They found that the relative contribution 
of natural variability (orange) decreases over time as uncertainty of global impact models 
increases significantly (green). Note that these findings would be expected to differ for a 
different spatial scale and geography. A global hydrologic model is a type of global impact 
model; it uses climate change projections as inputs, and models impacts on other variables.
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Figure 8 Fractional change in uncertainty sources for annual median runoff (calculated from daily runoff) for a 
selected grid cell (42.7° N–73.9° E; Albany, NY). Legend: Global Climate Model (GCM), Global Impact Model (GIM), 
Representative Concentration Pathway (RCP), Internal Variability (Ivar). The reference period is 1971–2005, and 
10-year moving averages were used (Ignazio Giuntoli et al., 2018). Note that these findings would be expected to 
differ for a different spatial scale and geography.

Magnitude of uncertainty for other variables

The relative magnitude of different sources of uncertainty depends on the variables of 
interest. Practitioners may also be interested in projections of temperature or precipitation, 
including snow (e.g. for an in-house model). For these needs, the reader is directed to liter-
ature on uncertainty decomposition for temperature and precipitation (e.g. Hawkins and 
Sutton, 2011; Fischer, Beyerle and Knutti, 2013; Hawkins et al., 2016; Hosseinzadehtalaei, 
Tabari and Willems, 2017; Van Uytven and Willems, 2018; Evin et al., 2019; Gao et al., 2019).

Figure 9 illustrates the time-evolution of uncertainty sources for temperature and precipitation 
(similar to Figure 8, which shows the same for runoff). Emissions scenarios tend to be a greater 
source of relative uncertainty for temperature than for precipitation projections (Ignazio Giuntoli 
et al., 2018), whereas precipitation projections are generally dominated by GCM uncertainty and 
natural variability rather than emissions scenarios (e.g. Hawkins and Sutton, 2011).
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Figure 9 The fractional uncertainty in decadal global mean climate projections, defined as the uncertainty divided 
by the expected mean change for (left) temperature and (right) precipitation (from Hawkins and Sutton 2011)
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This section presents the data transformation methods that may be needed between each 
step in the modeling chain outlined in Section 2. The data transformation methods can be 
applied to two types of time series: baseline (the data that are judged the best representa-
tion of a system’s past or current state) and/or simulation (direct outcome of a model). The 
output of a data transformation method is a scenario.

Section 3.1 presents the direct method, which can be used on the baseline or the sim-
ulation. The reduction and the adjustment methods, presented in Section 3.2 and 3.3, 
respectively, are typically applied to a baseline to account for data errors, trends, biases 
and heterogeneities. The extension, delta method and bias correction methods, outlined 
in Section 3.4 through 3.6, use the baseline and simulations to produce a future scenario. 
Note that theoretically, these methods may be applied everywhere and several times in the 
modeling chain. Section 6 and 7 provide guidance on their proper use for the valuation of 
assets. Note that multiple definitions exist for these methods in the scientific literature. As 
such, each method will be defined as it is being introduced in this section.

GENERAL ASSESSMENT OF THE DATA

Prior to applying transformation methods, data should be analyzed thoroughly. This will enable the 

practitioner to get accustomed to the data, and to better understand biases and imperfections. Without 

this step, if all they look at is the result produced at the end of the modeling chain, the practitioner 

may miss important pieces of information. In this respect, descriptive statistics (e.g. mean, standard 

deviation, etc.) and classification methods are good starting points.



Data Transformation Methods  | 52 

3.1. Direct method

The direct method, the most straightforward method, consists of applying no modifications to the 
data (baseline or simulation) before their integration into the next model of the modeling chain.

3.1.1. Advantages of the direct method

	� Easy to implement

	� No loss of information due to data transformation

3.1.2. Disadvantages of the direct method

	� All characteristics in the baseline and simulation are transmitted to the next step 
in the modeling chain.

3.2. Reduction method

This method involves reducing the baseline time period (as shown in Figure 10) and can be 
applied when part of the time series is considered unrepresentative of the current period. 
This can happen when the baseline has a statistically significant trend or has statistical het-
erogeneities (such as an abrupt change in mean, or heteroscedasticity).

Prior to the reduction of the baseline, it is important to run relevant statistical tests. It is 
also relevant to identify the cause(s) of the trend – to detect and attribute (see Appendix B 
– Detection and attribution in the context of climate change) – and of the statistical hetero-
geneities. As explained in Section 4, many drivers other than climate change can lead to a 
data trend or heterogeneities.

3.2.1. Advantages of the reduction method

	� Sample is more representative of current conditions.

	� Obtain a homogeneous sample when statistical heterogeneities exist.
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3.2.2. Disadvantages of the reduction method

	� Loss of valuable information present in the unused part of the time series (e.g. inter-
annual variability and extreme events that occurred during the unused part).

	� While detection and attribution studies are recommended before implementing this 
method, they are lengthy and complex. 

A)

B)

Figure 10 Example of reduction method. Panel A shows the entire baseline. Panel B shows the years considered 
after the reduction (the last 30 years of the baseline).
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3.3. Adjustment method

This method, also known as detrending, involves adjusting the baseline to remove a statis-
tically significant trend and make it representative of current conditions. This can be done 
using a correction factor proportional to time. As shown in Figure 11, the correction factor 
can be computed directly from the baseline. It can also be computed from simulations inte-
grating climate change and other pertinent drivers (see Section 4), as shown in Figure 12. 
This latter option can be an interesting way to isolate the influence of a single driver, in this 
case climate change, within the baseline.

The correction factor proportional to time can be computed on mean values or on quantiles 
(see Section 3.5 – Delta method). The correction factor can also be computed at the annual, 
seasonal, monthly or daily scale.

This method may be complementary to other methods. For example, bias correction or 
delta methods based on quantiles may benefit from being combined with an adjustment. 
Section 7 discusses this topic in detail.

Note that detection and attribution prior to the adjustment is relevant (see Section 4 and 
Appendix B – Detection and attribution in the context of climate change), as it will help the 
practitioner understand the physical basis of the trend.

3.3.1. Advantages of the adjustment method

	� Maintains the sequence of events while removing the trend, which can be of particular 
interest when comparing past, present and future (Snover et al., 2003).

3.3.2. Disadvantages of the adjustment method

	� Application of this method with a correction factor based on the baseline values with-
out proper detection and attribution (see Appendix B – Detection and attribution 
in the context of climate change) can lead to adjustments that have reduced physi-
cal basis.

	� While detection and attribution studies are recommended before implementing this 
method, they are lengthy and complex.

	� Modifies the baseline mean or quantiles, and ignores the other processes, such as the 
modification to sequences or inter-annual variability.

	� Application of this method may affect some important information about historical 
extreme events.

	� There is a risk to overfit the data. (See Section 7.5.3 – Over-fitting).
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A)

B)

Figure 11 Example of adjustment with the correction factor computed directly from the baseline. Panel A shows 
the entire baseline with its trend. Panel B shows the adjusted baseline.
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A)

B)

Figure  12 Example of adjustment with the correction factor computed from simulations integrating climate 
change. Panel A shows the baseline with its trend and the simulations integrating climate change with their re-
spective trends. The correction factor is computed from the average of the climatic simulations trend. Panel B 
shows the adjusted baseline.

3.4. Extension method

This method involves an extension of the baseline, when the baseline presents a statistically 
significant trend, to make it representative of future conditions. It can be done using a cor-
rection factor proportional to time. The correction factor can be computed directly from the 
baseline (as shown in Figure 13) or from simulations integrating climate change and other 
pertinent drivers (as shown in Figure 14). This latter option can be an interesting way to 
isolate the influence of a single driver, in this case climate change, within the baseline.
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The correction factor proportional to time can be computed on mean values or on quantiles 
(see Section 3.5 – Delta method). The correction factor can also be computed at the annual, 
seasonal, monthly or daily scale.

Detection and attribution prior to the computation of the correction factor from the baseline 
is highly suggested (see Section 4 and Appendix B – Detection and attribution in the context 
of climate change). If the correction factor is computed from simulations integrating climate 
change and other pertinent drivers, the detection and attribution is also relevant.

3.4.1. Advantages of the extension method

	� Enables the comparison of past years to a similar year with climate change.

	� Maintains the sequence of events, which can be of particular interest when comparing 
past, present and future (Snover et al., 2003).

3.4.2. Disadvantages of the extension method

	� Errors in the baseline, trends, cycles and step, along with abrupt changes in and influ-
ences from past drivers, are projected into the future and transmitted to the next step 
in the modeling chain.

	� Application of this method with a correction factor based on the baseline values with-
out proper detection and attribution can lead to projections with reduced physical 
basis (see Appendix B – Detection and attribution in the context of climate change).

	� While detection and attribution studies are recommended before implementing 
this method, they are lengthy and complex.

	� Modifies the mean or the quantiles of the baseline. Ignores the other processes, 
such as the modification to sequences or even inter-annual variability.

	� Ignores potential future steps and abrupt changes.
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A)

B)

Figure 13 Example of extension with the correction factor computed directly from the baseline. Panel A shows 
the entire baseline with its trend and its projection in the future. Panel B shows the adjusted baseline. Note that 
only the last 15 years of the baseline are projected into the future.
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A)

B)

Figure 14 Example of extension with the correction factor computed from simulations integrating climate change. 
Panel A shows the baseline with its trend and the simulations integrating climate change with their respective 
trends. The correction factor is computed from the average of the climatic simulations trend. Panel B shows the 
baseline extended over 15 years.
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3.5. Delta method

The delta method, also known as the scaling or perturbation approach, is described by 
Charron (2016) for climate data. The definition is generalized below to suit the needs of the 
modeling chain.

This method involves a perturbation of the baseline using the relative or absolute change 
between the simulated reference and simulated future periods within a given simulation 
integrating climate change. The relative or absolute change between the reference and the 
future is first calculated (Figure 15A) and the change (or delta) is then applied to the baseline 
(Figure 15B).

There are two ways to use the method, namely by calculating a mean (Figure 15A) change 
over the entire distribution of observations or by using the corresponding quantiles of the 
distribution (see Gennaretti, Sangelantoni and Grenier, (2015) for an example of quantile 
mapping technique). The latter allows for the application of a different correction factor to 
the distribution tails, making it possible to change the extremes of the distribution differently 
than the rest of the distribution. An important point here is that this technique is applied to 
specific time horizons (such as 30-year periods), not to the entire time series.

Absolute delta (addition/subtraction) is typically used for variables that do not have a 
true zero (e.g. temperature). Relative delta (ratio) is typically used for variables that have 
a true zero (e.g. precipitation).

The mean change or the quantiles (i.e. the probability distribution function) can be com-
puted at the annual, seasonal, monthly or daily scale. Typically, a mean annual change will be 
applied on mean annual values and so on. 
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A)

B)

Figure 15 Example of delta method by calculating the mean. The relative change between the simulation in the 
reference period and in the future is first calculated (Panel A). The change is then applied to the baseline (Panel 
B) (adapted from Charron, 2016).



Data Transformation Methods  | 62 

3.5.1. Advantages of the delta method

	� Simple when calculating a mean change over the entire distribution of observations. 
This method is simple because a single factor is calculated and it is simply added to 
the observations over specific (e.g. 30-year) time horizons.

	� Average complexity when using the corresponding quantiles of the distribution. This 
method is moderately complex, because it requires a comparison of distributions 
(i.e. probability distribution functions). Nonetheless, distributions are obtained over 
specific time horizons (e.g. 30-year), which simplifies the process.

	� It enables the comparison of past years with a similar future year with climate change. 
It also maintains the sequence of events, which can be of particular interest when 
comparing the past with the future (Snover et al., 2003).

3.5.2. Disadvantages of the delta method

	� Errors in the baseline, trends, cycles, step and abrupt changes and influences from 
past drivers are projected into the future and transmitted to the next step in the 
modelling chain.

	� Some temporal information may be missing in the final result. For example, in 
Figure 15, the years 2000 to 2040 are missing.

	� This method modifies the means or the quantiles of the baseline (or simulation based 
on the baseline). All other information contained in the simulation integrating climate 
change, such as modification to sequence of dry and wet days or length of dry spells, 
are not used in the scenario.

	� Potential future step changes (abrupt changes) are ignored.
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3.6. Bias correction method

Bias correction is described by Charron (2016) for climate data. The definition 
is generalized below to suit the needs of the modeling chain.

This method involves an adjustment or correction of the entire simulation 
integrating climate change using a bias or correction factor such that differ-
ences between the simulated reference period data and the baseline val-
ues are reduced. The correction factor is first calculated by comparing the 
simulated reference period and the baseline values over the same time 
period, such as 1961–1990 (Figure 16A). The correction is then applied 
to the entire simulation integrating climate change (Figure 16B). As for 
the perturbation method, a bias correction can be based on a mean 
correction or on quantiles. However, unlike the delta method where 
the correction is done for a given time horizon, this method allows 
for the bias to be removed from the entire simulation integrating 
climate change.

Absolute correction factor (addition/subtraction) is typically used 
for variables that do not have a true zero (e.g. temperature). 
Relative correction factor (ratio) is typically used for variables 
that have a true zero (e.g. precipitation).

As with the delta method, the mean change or the quantiles 
can be computed at the annual, seasonal, monthly or daily 
scale. Typically, a mean annual change will be applied on 
mean annual values and so on. 
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A)

B)

Figure 16 Example of bias correction method. The relative change between the simulated reference period and 
the baseline values is first calculated (Panel A) and the change is then applied to the simulation time series 
(Panel B) (adapted from Charron, 2016).
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3.6.1. Advantages of bias correction method

	� Simplicity: calculate a single factor and add it to the observations over specific time 
horizons (e.g. 30 years).

	� Because the simulation is modified to match the observations (rather than the 
observations modified to match the simulation), all other information contained in 
the simulation integrating climate change, such as modification to sequence of dry 
and wet days or length of dry spells, is retained.

	� With this method, it is possible to use several simulations integrating climate change, 
and thus get many different realizations or sequences of events.

	� The method yields continuous results in time rather than results over specific time 
horizons (e.g. 30 years).

3.6.2. Disadvantages of bias correction method

	� Method of greater complexity when using the corresponding quantiles of the distribu-
tion. This method is highly complex, because it requires a comparison of distributions 
(i.e. probability distribution functions). Moreover, the changes are applied to the entire 
simulation, which complicates the process.

	� Weaknesses in the simulation not corrected by bias correction (i.e. unrepresentative 
sequences of events) are transmitted to the next step in the modeling chain.

	� This method does not maintain the historical sequence of events, preventing direct 
comparison between the past and the future, as in the delta method.
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4 Baseline 
Options
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This section reviews important concepts about selecting and developing a baseline. In this 
Guidebook, the baseline is the data that are judged to best represent the past or current 
state of a system. In the valuation method with climate change, it can be used in several 
ways: to produce simulations based on the baseline (the first set of simulations explained in 
Section 2), to perform data transformation methods and/or to calibrate hydrologic models.

Two types of baselines are suggested: the hydrologic baseline only; or a combination of the 
climatic and hydrologic baselines. In the latter case, both types of baselines are needed to at 
least calibrate and validate the hydrologic model.

	� The climatic baseline, presented in Section 4.1, consists of historical data for precipi-
tation, and minimum and maximum temperatures (and potentially other hydroclimate 
variables needed as input in the hydrologic model).

	� The hydrologic baseline, presented in Section 4.2, consists of historical hydrology data.

Many criteria must be considered when selecting the baseline option. Among them, the 
most important are: the availability of a hydrologic model and a water management model; 
the minimum amount of time to perform the assessment; the cost and expertise required; 
and the desired level of control over the modeling chain. Table 5 describes each selection 
criteria and Figure 17 lists the specific requirements for each of the baseline option.

As Figure 17 shows, when working with the climatic and hydrologic baseline, a hydrologic model 
is needed, and a water management model is potentially needed (the need for a water man-
agement model also depends on the upstream watershed of a dam, whether the inflows are 
regulated or naturalized). The assessment will take more than 3 months to realize, the cost and 
expertise needed are high and the level of control over the modeling chain is high.

If working with the hydrologic baseline only, a hydrologic model is potentially needed 
(it will also depend on the outcome of the analysis described in Section 5) and a water 
management model is also potentially needed. The assessment may take less than one 
month, the cost and expertise needed are average and the level of control over the 
modelling chain is average.
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Figure 17 Overview of selection criteria for the type of baseline (see Table 5 for definitions)

Table 5 Description of selection criteria for the type of baseline and for climate change data

Selection Criteria Description

Hydrologic Model The option requires that a hydrologic model be calibrated, validated and run to 
produce streamflow data; calibration of the hydrologic model requires a good set 
of climate information.

Water Management Model The option requires a model that uses the inflow from the hydrologic model and 
includes a routine for routing water between sub-catchments and through reservoirs, 
dams and hydraulic structures. It provides explicit representation for decisions related to 
storing or releasing water. The options range from simple models following defined rule 
curves to advanced optimization routines that explicitly seek to maximize some criteria 
while respecting a series of constraints such as regulatory limits. They are sometimes 
embedded in hydrologic models and in energy models. This type of model is required to 
produce simulations with regulated streamflow and to represent flow in an actual regu-
lated environment (see Section 6.3.1 – Specific consideration: regulated vs. Naturalized).

Time Estimation of the minimum amount of time required to implement the option.

Cost and Expertise Estimation of the cost and expertise required to implement the option. Section 4.1 – 
Climatic baseline and 4.2 – Hydrologic baseline provide more information about the 
kind of expertise needed.

Level of Control over 
the Modelling Chain

Estimation of the level of control over the modeling chain. Typically, the greater 
the control over the modeling chain, the more comprehensive the results.
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WARNING ABOUT EXAMPLES OF RESOURCES

Note that each section includes examples of resources to help the practitioner carry out valuation 

exercises. None of these resources have been validated. Therefore, the practitioner should assess the 

adequacy of each resource before integrating it into the modeling chain.

4.1. Climatic baseline

The climatic baseline typically consists of historical data for precipitation, and minimum 
and maximum temperatures (and potentially other hydroclimate variables needed as 
hydrologic model inputs).

It is new to most organizations in the industry. It complies with the Hydropower Sector 
Climate Resilience Guide (IHA, 2019) and offers many advantages to those starting to work 
with climate change.

Historical data for climate can come from weather stations in the watershed, from gridded 
observations or from reanalysis. It is best to use the same coherent dataset for all variables. 
A single dataset is consistent in time and space; using data from different datasets can pro-
duce inconsistencies in the modeling chain.

The standard minimum time period to account for natural variability cycles is 30 years. A 
longer time period enables the capture of longer climatic cycles, such as those that occur 
in the Great Lakes Basin (Hanrahan et al., 2010), and is worth considering. The practitioner 
should note that the weather-gauge network density, and the quality of gridded-observed 
product and reanalysis might not be sufficient for the next step in the modeling chain. For 
more information, see the Box Climatic Drivers and Limitations of the Climatic Baseline.

A careful selection of the climatic baseline, consistent with the selection of the climate 
change data and data transformation methods, is also recommended, as it can avoid further 
inconsistencies in the modeling chain. For a discussion on this subject, see Section 7.4 – 
Consistency of climatic data and time periods.
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CLIMATIC DRIVERS AND LIMITATIONS OF THE CLIMATIC BASELINE

What are climatic drivers?

The climatic baseline incorporates natural variability, natural catastrophes and climate change all at the 

same time. These are the driving forces – the climatic drivers. Natural variability is the result of climate cycles 

such as El Niño and La Niña, which influence temperature and precipitation in the watershed and directly 

impact streamflow. Natural catastrophes, such as large volcanic eruptions, can also have significant impacts 

on a watershed, as they can temporarily decrease temperatures across the globe. Climate change, which is 

a change in long-term average of weather pattern, also has notable impacts on a watershed.

Errors, heterogeneities, bias and uncertainties

The quality of the climatic baseline for a watershed often depends on the density of its weather gauge 

network. For example, a low-density gauging network samples few points in space, and while it may detect 

intense confined storms, it may be bypassed entirely by a storm that impacts almost the entire watershed.

The climatic baseline is also prone to errors, heterogeneities, bias and uncertainties. Indeed, weather sta-

tions’ data contain measurement errors and heterogeneities. Sometimes, the measurement instrument or 

its location changes, which can create breaks in datasets and suggest false trends in the time series.

Gridded observations and reanalyses are also prone to bias and uncertainties. For example, gridded obser-

vations, in addition of being dependent upon the density of its weather gauge network, can smooth out and 

diminish the peak of convective storms through areal averaging. Reanalyses merge models and observa-

tions, drawing on the strengths of each. 

These limitations of the climatic baseline can become embedded in hydrologic simulations – and in the rest 

of the modeling chain – because of the hydrologic model and its calibration process. Through calibration, the 

model is tuned to provide adequate results, but the model becomes conditioned to some characteristics of 

the selected precipitation product.

4.1.1. Requirements for selecting the climatic baseline

	� Available climatic and hydrologic datasets are suitable and cover a sufficiently long 
time period.

	� A properly calibrated continuous hydrologic model (see Appendix F – Selection and 
calibration of a hydrologic model).

	� If the upstream watershed is highly regulated (see Section 6.3.1 – Specific consideration: 
regulated vs. naturalized), potentially a water management model.

	� More than 3 months to complete the valuation process.

	� Human resources with significant expertise in hydrology and average expertise in climate 
and climate change.
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4.1.2. Why choose the climatic baseline?

	� An organization is interested in getting a deeper understanding of the water-
shed hydrology.

	� An organization is interested in the relative impact of climate change compared to the 
impacts of other hydrologic drivers.

	� An organization is interested in following the methods laid out in the Hydropower 
Sector Climate Resilience Guide (IHA, 2019).

4.1.3. Advantages of the climatic baseline

	� This option provides the most flexibility in terms of analyses. The practitioner is in a 
position to analyze and better understand every hydrologic driver (see Section 4.2 – 
Hydrologic baseline). The following four methods can help increase the understanding 
of the relative importance of each hydrologic driver:

	� Force the hydrologic model with a stationary (non-changing) climatic scenario to 
understand natural variability.

	� Force the hydrologic model with different climatic scenarios to understand the 
impact of climate change on the recent past.

	� Force the hydrologic model with different land uses to understand the impacts of 
land-use changes in the recent past.

	� Force the water management model with different operation rules to understand 
the impacts of regulatory changes in the recent past.

	� The practitioner can use a water management model to make the future scenario 
more consistent with the baseline (see Section 7.8 – Benefits of hydrologic and water 
management modeling).

	� With this type of baseline, the literature research is facilitated as more information 
exists about future regional climate (e.g. temperature and precipitation) than about 
future regional hydrology (e.g. streamflow) (see Section 5).

	� There are fewer sources of non-stationarity (changes over time) in the climate record 
than in the hydrologic record. Therefore, it can be easier to adjust a climatic baseline 
than a hydrologic baseline (see Section 6.3 – From hydrology to energy).
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4.1.4. Disadvantages of the climatic baseline

	� Relying on a hydrologic simulation based on the climatic baseline (reconstructed 
hydrology) implies a very strong hypothesis that the model performs adequately to 
represent the hydrology of the watershed. Even small biases in the hydrologic sim-
ulation based on the climatic baseline can result in serious implications for energy 
modeling performed later in the modeling chain. This hypothesis can be verified using 
the steps provided in Appendix G – Validation of hydrologic simulations.

	� For watersheds affected by upstream regulation, a water management model might 
be unable to reproduce the regulation characteristics because of a lack of data/knowl-
edge about the dams upstream (e.g. dams are in a different country) or because of 
the complexity of the regulation. In this case, the hydrologic simulation based on the 
climatic baseline might be problematic in the rest of the modeling chain. An alterna-
tive could be to work at a coarser time scale (see Section 7.7 – Model scaling).

4.1.5. Next steps

a)	 Assess the adequacy of climatic baseline (see Appendix E – Validation of climate products).

b)	 Carry out detection and attribution study if needed (see Appendix B – Detection and 
attribution in the context of climate change)

c)	 Apply data transformation if needed (see Section 6.2 – From climate to hydrology).

d)	Select and calibrate hydrologic model (see Appendix F – Selection and calibration of 
a hydrologic model).

e)	 Run hydrologic simulation based on climatic baseline.

f)	 Assess adequacy of hydrologic simulation based on climatic baseline (see Appendix G – 
Validation of hydrologic simulations).

g)	 Carry out sensitivity analysis with the modeling chain (see Appendix H – Sensitivity Analysis)

h)	 Go to Section 5.
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4.1.6. Examples of resources for the climatic baseline

Gridded observation

NRCan Canada Daily Gridded product – Natural Resources Canada 
https://cfs.nrcan.gc.ca/projects/3/4

Livneh gridded precipitation and other meteorological variables for continental US, 
Mexico and Southern Canada – National Center for Atmospheric Research (NCAR) 
https://climatedataguide.ucar.edu/

Daymet – NASA 
https://daymet.ornl.gov/

Daily Gridded Meteorological Datasets – Pacific Climate Impacts Consortium (PCIC) 
https://data.pacificclimate.org/portal/gridded_observations/map/

Prism Recent Past – PRISM Climate Group 
http://prism.oregonstate.edu/

Climatic Research Unit Time-Series (CRU TS) – Climatic Research Unit (CRU) 
https://crudata.uea.ac.uk/cru/data/hrg/

Reanalysis

The European Centre for Medium-Range Weather Forecasts 5th generation reanaly-
sis (ERA5) – European Centre for Medium-Range Weather Forecasts (ECMWF) 
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

ERA5-Land – European Centre for Medium-Range Weather Forecasts (ECMWF) 
https://www.ecmwf.int/en/era5-land

Climate Forecast System Reanalysis (CFSR) – National Centers for Environmental 
Prediction (NCEP) 
https://climatedataguide.ucar.edu/climate-data/
climate-forecast-system-reanalysis-cfsr

WATCH-Forcing-Data-ERA-Interim – Water and Global Change (WATCH) 
http://www.eu-watch.org/data_availability

Modern-Era Retrospective analysis for Research and Applications (MERRA) – NASA 
https://gmao.gsfc.nasa.gov/reanalysis/MERRA/
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Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) – 
NASA 
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

AgMERRA – NASA 
https://data.giss.nasa.gov/impacts/agmipcf/agmerra/

North American Regional Reanalysis (NARR) – National Centers for Environmental 
Information (NOAA) 
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
north-american-regional-reanalysis-narr

JRA55 – National Center for Atmospheric Research (NCAR) 
https://climatedataguide.ucar.edu/climate-data/jra-55

Mixed products

Multi-Source Weighted-Ensemble Precipitation (MSWEP) – Princeton University 
http://www.gloh2o.org/

Global Meteorological Forcing Dataset for land surface modelling (GMFD) – Princeton 
University 
http://hydrology.princeton.edu/data.pgf.php

WFDEI-GEM-CaPA – Federated Research Data Repository 
https://www.frdr-dfdr.ca/repo/handle/doi:10.20383/101.0111

4.2. Hydrologic baseline

The hydrologic baseline consists of historical hydrology data and corresponds with the baseline 
most organizations typically use to value assets (see Section 2.1 – Traditional valuation method).

Historical hydrology data can come from streamflow observations: of nearby sites; trans-
posed from another site; from regionalization techniques (Razavi and Coulibaly, 2013); or 
from a reconstruction by water balance (reconstruction of inflows in a reservoir based on the 
changes of level and other variables).

As with the climatic baseline, it is recommended to use a minimum of 30 years worth of data. 
Using a longer period is also worth considering (see Section 4.1 – Climatic baseline).
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Historic flow measurements are influenced not only by climate, but also by other factors such 
as changes in instrumentation (e.g. type of flow gauge), changes at the watershed level (such as 
changes in land use), etc. This means that climate change trends in the streamflow record can be 
exacerbated, neutralized or reversed by other driving forces. Therefore, it is important to have 
a strong understanding of the factors influencing the flow record when working with climate 
change (see the Box Hydrologic Drivers and Limitations of the Hydrologic Baseline).

HYDROLOGIC DRIVERS AND LIMITATIONS OF THE HYDROLOGIC BASELINE

What are hydrologic drivers?

The climatic baseline and the hydrologic baseline both incorporate natural variability, natural catastro-

phes and climate change. Indeed, when the temperature and precipitation over a watershed are influ-

enced, the streamflow is directly impacted. Other factors impact only the hydrologic baseline. These 

include land-use changes, such as urbanization, deforestation and wildfires, as they can significantly 

modify hydrologic processes such as infiltration capacity and evapotranspiration. Finally, the hydrologic 

baseline also incorporates changes in the regulation of upstream reservoirs and hydraulic structures, 

such as construction or refurbishment of hydraulic structures or adjustments changes in the regulation 

of existing structures. All of these are driving forces of the hydrologic baseline – the hydrologic drivers. 

They all act simultaneously on the amount and timing of inflows.

Errors, heterogeneities, bias and uncertainties

Like the climatic baseline, the hydrologic baseline is also prone to errors, heterogeneities, bias and 

uncertainties. Streamflow observations are subject to measurement errors and uncertainties due to 

instrument uncertainty, measurement conditions, uncertainties of rating curves and their evolution 

over time (Horner et al., 2018). These also contain heterogeneities when the measurement instrument 

or its location changes. The heterogeneities can create breaks and/or false trends in the time series. 

Streamflow observations from another site or transposed from another site are additionally impacted 

by the uncertainty of the transposition method. Similarly, streamflow reconstruction from water bal-

ance will contain uncertainties due to the reconstruction method.
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4.2.1. Requirements for selecting the hydrologic baseline

	� Access to a suitable hydrology dataset covering a sufficiently lengthy time period

	� Average expertise in hydrology, climate and climate change

4.2.2. Why choose the hydrologic baseline?

	� An organization is looking at climate change for the first time and wants to assess the 
level of effort required.

	� The organization has time (less than one month) and resource constraints. Note that 
developing a hydrologic baseline may take longer than one month depending on the 
size of the watershed, the availability of the data and other factors.

	� A continuous hydrologic model for the watershed is not available. This could be 
because the organization has either not identified needs that warrant its develop-
ment, or is in the process of developing it.

	� The inflows for the dam of interest come from a highly regulated watershed (see 
Section 6.3.1 –Specific consideration: regulated vs. naturalized). Very few data are 
available to properly model the upstream watershed regulation.

	� There are no meteorological stations in or near the watershed of interest, which make 
the use of the climatic baseline more difficult.

	� The length of the hydrologic record is longer than the length of the meteorological 
record (see Section 4.1 – Climatic baseline).

	� The organization’s internal processes and planning assumptions are strongly linked to 
an existing hydrologic baseline.

4.2.3. Advantages of the hydrologic baseline

	� As the hydrologic baseline is often used in the industry for asset valuation, its use to 
evaluate the impacts of climate change could be more acceptable in the organization. 
It provides a high level of continuity with former analyses of the hydroelectric system.

	� The hydrologic record of a watershed integrates the hydrologic drivers for large spa-
tial domains (e.g. climate and land cover).
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4.2.4. Disadvantages of the hydrologic baseline

	� The hydrologic baseline has many sources of non-stationarity (i.e. hydrologic drivers 
that cause changes over time). The practitioner might not always have a deep under-
standing of processes underway in the watershed.

4.2.5. Next steps

a)	 Apply data transformation if needed (see Section 6.3 – From hydrology to energy)

b)	 Carry out sensitivity with the modeling chain (see Appendix H – Sensitivity Analysis)

c)	 Go to Section 5.

4.2.6. Examples of resources for the hydrologic baseline

Historical Hydrometric Data – Government of Canada 
https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html

National Water Information System – United States Geological Survey (USGS) 
https://waterdata.usgs.gov/nwis

Water Level and Flow Rates – Government of Quebec 
https://www.cehq.gouv.qc.ca/hydrometrie/index-en.htm
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This section provides an overview of the different types and sources of data that the practi-
tioner can use to represent climate change conditions. The climate change data can be used 
to produce simulations integrating climate change (the second set of simulations explained 
in Section 2) and/or to perform data transformation methods.

All of these options are based on emissions scenarios and climate models. For example, 
the practitioner can work with raw climatic simulations (direct output from climate models) 
from the CMIP experiments. This option offers many advantages, but involves a lot of work 
and requires specific expertise to produce a credible end result. Another option is to rely on 
the expertise of governmental organizations, climate centers, universities, engineering firms, 
consultants, etc., which may have carried out a lot the work already. It might conserve time 
and money, and provide robust results.

Section 5.1 through 5.7 present the various types and sources of data. Before going further, 
consult the Box Warning about examples of resources in Section 4.

When selecting climate change data, many criteria must be considered. The main ones are 
the same as for the baseline: availability of a hydrologic model and a water management 
model; minimum amount of time needed to perform the assessment; cost and expertise 
required; and desired level of control over the modeling chain. Table 5 describes each selec-
tion criteria and Figure 18 lists the specific requirements for each of the climate change 
data options.

As shown in Figure 18, when working with pre-computed results from climatic simulations, a 
hydrologic model is needed, and a water management model is potentially needed (the need 
for a water management model also depends on the upstream watershed of a dam, whether 
the inflows are regulated or naturalized). The assessment can take less than 3 months to 
complete, the cost and expertise needed are high, and the level of control over the modelling 
chain is average.
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Figure 18 Overview of selection criteria for the type of climate change data (see Table 5 for definitions)
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5.1. Raw climatic simulations

Most raw climatic simulations from either GCMS or RCMs are publicly available. Precipitation, 
along with minimum and maximum temperatures, are typically of interest for hydrologic 
modeling, although other variables such as wind and solar radiation are more commonly 
included in recent years to assess evapotranspiration using more complex formulae. The 
time step of the data may vary from sub-daily to monthly. The spatial resolution of the 
data typically varies by model: from a grid of 10 to 45 kilometers for RCMs, and from 90 to 
350 kilometers for GCMs. Also, calendars within RCM and GCM do not necessarily follow the 
Gregorian calendar (some GCM exclude leap years and others use a 360-day year).

RESOLUTION, BIASES AND EXTRACTION OF RAW CLIMATIC SIMULATIONS

Despite coarse resolution and biases, raw climatic simulations data are still usable. However, additional 

manipulations must be made on the data before their integration in the modeling chain. Downscaling 

methods can be undertaken to deal with coarse resolution (see Charron (2016) and Maraun and 

Widmann (2018)). The delta method (Section 3.5) or bias correction method (Section 3.6) can be 

undertaken to correct biases.

Downloading these datasets and extracting the relevant variables can be a long and tricky process. 

The datasets are on international public servers (e.g. Earth System Grid Federation (ESGF) nodes), in a 

format not familiar to most water-resources managers (e.g. NetCDF files) and their size is often large 

(multiple gigabytes per variable per year). Climate-service providers tend to have the skills to deal with 

these situations and can be of a great help.

5.1.1. Requirements for selecting raw climatic simulations

	� Good-quality climatic and hydrologic baselines

	� A properly calibrated continuous hydrologic model

	� If the upstream watershed is highly regulated (see 6.3.1 – Specific consideration: reg-
ulated vs. naturalized), potentially a water management model.

	� More than 3 months to complete the valuation process

	� Strong expertise in hydrology, climate and climate change, and strong programming 
skills (raw climatic simulations are gridded products in NetCDF files format)
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5.1.2. Why choose raw climatic simulations?

	� The business activity needs detailed information (examples: risk analysis, late stage of 
project development, refurbishment, etc.).

	� There is no readily available, well performing and robust dataset (e.g. post-processed 
climatic simulations (Section 5.2) or hydrologic simulations (Section 5.5) for the 
watershed of interest).

	� Conducting in-house post-processing, data transformation method for further use in 
the modelling chain, can be an improvement over existing post-processed products 
(e.g. high-quality data are available from private climate stations and are not used in 
existing post-processed products).

	� The practitioner wants to explore a very specific question and the climate ensemble is 
not already downscaled and bias-corrected.

5.1.3. Advantages of raw climatic simulations

	� The organization has complete control over the modeling chain.

	� Supports the production of several simulations to represent rare events.

5.1.4. Disadvantages of raw climatic simulations

	� Complexity

	� Considerable time and expertise are required for post-processing of the raw simula-
tions. For newcomers, the learning curve to deal with raw climate data is steep.

5.1.5. Next steps

a)	 Make sure to choose both a climatic and hydrologic baseline (see Section 4).

b)	Follow guidance provided in Appendix  I – Best and good practices for the ensem-
ble approach.

c)	 Make GCMs selection, if needed (see Appendix C – GCM selection methods).

d)	 Go to Section 6.2 – From climate to hydrology.
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5.1.6. Examples of resources for raw climatic simulations

CMIP – World Climate Research Programme 
https://www.wcrp-climate.org/wgcm-cmip

Coordinated Regional Climate Downscaling Experiment (CORDEX) –  
World Climate Research Programme 
https://www.cordex.org/

Dynamically-downscaled climate projections – Climate Change Data Portal 
http://ccdp.network/

Climate Change Knowledge Portal – World Bank Group 
https://climateknowledgeportal.worldbank.org/download-data

UKCP18 – Met Office 
https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/about

5.2. Post-processed climatic simulations

Post-processed (downscaled and bias-corrected) climatic simulations ready for direct input 
into the hydrologic model are also available. Indeed, many climate centers publish datasets 
of this type; the practitioner can also partner directly with a climate center to obtain these.

A dataset with the appropriate input for the hydrologic model (typically precipitation, min-
imum and maximum temperatures) is required. Some of these datasets are available for 
many RCPs and GCMs at a resolution of 10 kilometers on a coherent grid at a daily resolution.

ADEQUACY OF POST-PROCESSED CLIMATIC SIMULATIONS

Downscaled and bias-corrected climatic simulations are still not perfect representations of the climate. 

These techniques will correct only certain aspects of the raw climatic simulations. Before using them in 

the modeling chain, be sure to carefully evaluate their adequacy and limitations (Appendix E – Validation 

of climate products).
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5.2.1. Requirements for selecting post-processed climatic simulations

	� An adequate dataset (see examples of resources below and next steps), because 
downscaled and bias corrected climate projections are not readily available.

	� Good-quality climatic and hydrologic baselines

	� A properly calibrated continuous hydrologic model

	� If the upstream watershed is highly regulated (see Section 6.3.1 – Specific consider-
ation: regulated vs. naturalized), potentially a water management model

	� More than 3 months to complete the valuation process

	� Significant expertise in hydrology, climate and climate change, and significant programming 
skills (post-processed climatic simulations are gridded products in NetCDF files format)

5.2.2. Why choose post-processed climatic simulations?

	� The business activity needs detailed information (examples: risk analysis, late stage of 
project development, refurbishment, etc.).

	� Considerable savings of time and resources compared to using raw simulations if an 
adequate dataset is available for the watershed of interest.

5.2.3. Advantages of post-processed climatic simulations

	� The organization has good control over the modeling chain.

	� Post-processed datasets may have been created with more advanced post-process-
ing techniques than in-house capabilities.

5.2.4. Disadvantages of post-processed climatic simulations

	� The documentation of the datasets is not always clear and the limits of use are not 
well defined.

	� The practitioner may lack confidence in externally produced data.

	� Post-processing over large areas (e.g. across Canada) is typically done with interpo-
lated or reanalysis datasets, which vary in skill depending on the location.
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5.2.5. Next steps

a)	 Make sure to choose both a climatic and hydrologic baseline (see Section 4).

b)	 Follow guidance provided in Appendix  I – Best and good practices for the ensem-
ble approach.

c)	 Evaluate transferability of data and results, if needed (see Appendix D – Transferability of 
data and results)

d)	 Assess the adequacy of the climatic simulations (see Appendix E – Validation of climate 
products).

e)	 Go to Section 6.2 – From climate to hydrology.

5.2.6. Examples of resources for post-processed climatic simulations

Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) – NASA 
https://cds.nccs.nasa.gov/nex-gddp/

Coordinated Regional Climate Downscaling Experiment (CORDEX) – World Climate 
Research Programme 
http://www.cordex.org/data-access/bias-adjusted-rcm-data/

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 
https://www.isimip.org/

Standard scenarios v1.0 – Ouranos 
Project Under Development – Website coming soon!

Statistically downscaled climate scenarios – Pacific Climate Impacts Consortium 
https://pacificclimate.org/data/statistically-downscaled-climate-scenarios

Projections for Australia’s NRM’s Regions – Climate change In Australia 
https://www.climatechangeinaustralia.gov.au/en/climate-projections/explore-data/
about-data/data-availability/

Dynamically-downscaled climate projections – Climate Change Data Portal 
http://ccdp.network/

Spatial Downscaling Data – Climate change, agriculture and Food security (CCAFS) 
http://www.ccafs-climate.org/data_spatial_downscaling/
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5.3. Weather generators

A weather generator is a numerical model that produces synthetic climatic simulations based 
on the statistical characteristics of observed weather. Commercial versions are available, or 
the practitioner can develop one independently. The weather generator can either produce 
a stationary climate or be directly informed by trends from GCMs.

ADEQUACY OF CLIMATIC SIMULATIONS PRODUCED BY WEATHER 
GENERATORS

The adequacy/quality of climatic simulations produced by weather generators ranges from poor to 

good. Further, implementation of weather generators in studies of climate change impacts is less com-

mon than the use of climatic simulations from GCMs accompanied by the appropriate data transforma-

tion methods due to their statistical, rather than physical, basis.

Also, few commercial weather generators adequately maintain the spatial coherency of the weather 

between several sub-watersheds simultaneously.

5.3.1. Requirements for selecting weather generators

	� Good-quality climatic and hydrologic baselines

	� A properly calibrated continuous hydrologic model

	� If the upstream watershed is highly regulated (see Section 6.3.1 – Specific consider-
ation: regulated vs. naturalized), potentially a water management model.

	� More than 3 months to complete the valuation process.

	� Significant expertise in hydrology, climate and climate change, strong expertise in 
statistics, and significant programming skills.

5.3.2. Why choose weather generators?

	� The business activity needs detailed information (examples: risk analysis, late stage of 
project development, refurbishment, etc.).

	� To produce many simulations and recreate rare events.

5.3.3. Advantages of weather generators

	� Good control over the modeling chain

	� Generated time series conserve some key statistical parameters (e.g. length of wet 
and dry spells; Hayhoe, 2000).
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5.3.4. Disadvantages of weather generators

	� Complexity

	� The development of weather generators that are adequate for hydrology, particularly 
if they necessitate multiple variables at multiple sites, is a challenging and lengthy task 
that few statisticians can accomplish. There are, however, a few successful examples 
(e.g. Abbasnezhadi, 2017).

	� Procedure is entirely statistical (Wilks and Wilby, 1999).

	� Quality of the output can be limited by the ability of the statistical model to produce a 
satisfactory fit (Wilks and Wilby, 1999).

5.3.5. Next steps

a)	 Make sure to choose both a climatic and hydrologic baseline (see Section 4).

b)	 Follow guidance provided in Appendix  I – Best and good practices for the ensem-
ble approach.

c)	 Evaluate transferability of data and results, if needed (see Appendix D – Transferability of 
data and results)

d)	 Assess the adequacy of the climatic simulations (see Appendix E – Validation of climate 
products).

e)	 Go to Section 6.2 – From climate to hydrology.

5.3.6. Examples of resources for weather generators

KnnCAD Version 4 – University of Western Ontario 
(King et al., 2014)

Multi-site stochastic weather generator (MulGETS) – Matlab 
https://www.mathworks.com/matlabcentral/fileexchange/47537-multi-site-stochstic- 
weather-generator-mulgets 
*** Integration of multi-annual cycles: (Chen et al., 2019)

OSSE-based algorithm – University of Manitoba 
(Abbasnezhadi, 2017)
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5.4. Pre-computed results from climatic simulations

Pre-computed results from climatic simulations can be found on websites, data portals, 
reports and scientific articles. Relevant information includes mean temperature and pre-
cipitation levels at the monthly, seasonal or annual scale for various time horizons (present 
and future to apply the delta method on the climatic baseline). Information about trends for 
these climate variables is also relevant (to apply an extension to the climatic baseline), and 
may be presented as maps, tables, figures, etc.

5.4.1. Requirements for selecting pre-computed results from climatic simulations

	� Relevant results for at least the same time period as the climatic baseline and for a 
future period of interest (see Examples of resources and next steps).

	� Good-quality climatic and hydrologic baselines

	� A properly calibrated continuous hydrologic model

	� If the upstream watershed is highly regulated (see Section 6.3.1 – Specific consider-
ation: regulated vs. naturalized), potentially a water management model.

	� At least one month to complete the valuation process.

	� Significant expertise in hydrology, and average expertise in climate and climate change

5.4.2. Why choose pre-computed results from climatic simulations?

	� An organization is starting to work with the climatic baseline, is perhaps looking at 
climate change for the first time and wants to assess how the level of effort required.

5.4.3. Advantages of pre-computed results from climatic simulations

	� Minimal effort may lead to robust results.

	� Regional information may be available if local data are limited.

5.4.4. Disadvantages of pre-computed results from climatic simulations

	� The practitioner is limited to the amount and type of information that is available and 
may not be able to access the raw data used to create figures, tables and maps. This 
would limit the rest of the modeling chain to the least-comprehensive approach.

	� The practitioner is mostly limited to the delta method.

	� The information might not be available at the appropriate spatial/time scale or for the 
appropriate watershed.

	� Several studies of the same watershed can yield different results, leading to confusion.



Options for Climate Change Data  | 89 

5.4.5. Next steps

a)	 Make sure to choose both a climatic and hydrologic baseline (see Section 4).

b)	 Follow guidance provided in Appendix I – Best and good practices for the ensemble approach.

c)	 Evaluate transferability of data and results if needed (see Appendix D – Transferability of 
data and results).

d)	 Go to Section 6.2 – From climate to hydrology.

5.4.6. Examples of resources pre-computed results from climatic simulations

Atlas of Global and Regional Climatic simulations – IPCC 
https://www.ipcc.ch/report/ar5/wg1/atlas-of-global-and-regional-climate-projections/

Climate Change Knowledge Portal – World Bank Group 
https://climateknowledgeportal.worldbank.org/

Climate Data for a Resilient Canada – Environment and Climate Change Canada 
https://climatedata.ca/

Climate Portraits – Ouranos 
https://www.ouranos.ca/climateportraits/#/

Statistical DownScaling Model (SDSM) – Loughborough University 
https://sdsm.org.uk/sdsmmain.html

LARS-WG – Long Ashton Research Station 
https://www.researchgate.net/publication/268304865_LARS-WG_A_Stochastic_
Weather_Generator_for_Use_in_Climate_Impact_Studies

CLImate GENerator (CLIGEN) – USA ARS 
https://www.ars.usda.gov/midwest-area/west-lafayette-in/
national-soil-erosion-research/docs/wepp/cligen/

CLIMGEN – UK Climatic Research Unit 
https://crudata.uea.ac.uk/~timo/climgen/ 
http://modeling.bsyse.wsu.edu/rnelson/registration/ClimGen.htm

WeaGETS – Jie Chen 
https://www.mathworks.com/matlabcentral/fileexchange/29136-stochastic-weather- 
generator-weagets

WGEN, GEM, agGEM – USDA 
https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/?cid=stelprdb1043533
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5.5. Hydrologic simulations

Datasets of hydrologic simulations integrating climate change are increasingly available. 
The development of downscaled and bias-corrected climatic simulations, the selection and 
calibration of hydrologic model, as well as the running of climatic simulations are already 
complete. The practitioner can therefore directly access hydrologic simulations for a particu-
lar watershed or neighboring watersheds. If no such dataset is available, some organizations 
and/or consultants can produce them.

LIMITATIONS OF HYDROLOGIC SIMULATIONS

Hydrologic simulations are imperfect representations of watershed hydrology. These imperfections are 

the limitations of the datasets and should be evaluated by the practitioner before integrating them into 

the modeling chain.

5.5.1. Requirements for selecting hydrologic simulations

	� An adequate dataset (see Examples of resources and next steps), because hydrologic 
simulations are not readily available

	� A good hydrologic baseline

	� At least one month to complete the valuation process

	� Significant expertise in hydrology and average expertise in climate and climate change

5.5.2. Why choose hydrologic simulations?

	� Considerable savings of time and resources if an adequate dataset is available for the 
watershed of interest or for a nearby watershed

	� A continuous hydrologic model for the watershed is not available. This could be because 
the organization has either not identified needs that warrant its development, or is in the 
process of developing it.

5.5.3. Advantages of hydrologic simulations

	� Hydrologic simulations integrating climate change are already computed for several 
RCPs, GCMs and sometimes several hydrologic models.

5.5.4. Disadvantages of hydrologic simulations

	� The documentation of the datasets is not always clear, and the limits of use are not 
well defined.
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	� Limited ability to adapt the information for a specific purpose, as the practitioner did 
not calibrate the hydrologic model.

	� The practitioner may lack confidence in externally produced data.

5.5.5. Next steps

a)	 Follow guidance provided in Appendix I – Best and good practices for the ensemble approach.

b)	 Evaluate transferability of data and results, if needed (see Appendix D – Transferability of 
data and results).

c)	 Go to Section 6.2 – From climate to hydrology or Section 6.3 – From hydrology to energy.

5.5.6. Examples of resources for hydrologic simulations

NAC2H:The North-American Climate Change and hydroclimatology dataset –  
Richard Arsenault, François Brissette, Jie Chen 
http://doi.org/10.17605/OSF.IO/S97CD

PAVICS-HYDRO – ÉTS and Ouranos 
https://pavics-raven.readthedocs.io
Note: This resource does not directly provide hydrologic simulations, but can be used to 
produce them.

PAVICS-Data of Atlas hydroclimatique du Québec méridional 
https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/catalog/birdhouse/mddelcc/
PROJECTIONS_HYDROCLIMATIQUES/catalog.html

Station hydrologic model output – Pacific Climate Impacts Consortium 
https://pacificclimate.org/data/station-hydrologic-model-output

Gridded hydrologic model output – Pacific Climate Impacts Consortium 
https://pacificclimate.org/data/gridded-hydrologic-model-output

Hydrologic Response of the Columbia River Basin to Climate Change – UW Hydro 
https://www.hydro.washington.edu/CRCC/

Water quantity indicators for Europe – Copernicus 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
sis-water-quantity-swicca?tab=overview

Projected Changes in Streamflow – Skagit Climate Science Consortium 
http://www.skagitclimatescience.org/projected-changes-in-streamflow/
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5.6. Global datasets and proxies

Global hydrology datasets are increasingly available, and consist of hydrologic simulations 
created with global hydrologic model(s) fed by raw or downscaled and bias-corrected climatic 
simulations. Proxies consist of variables other than streamflow that can be modified to pro-
vide an idea of future streamflow behavior, such as the runoff variable of GCMs and RCMs.

RELEVANT INFORMATION ABOUT GLOBAL DATASETS AND PROXIES

Adequacy

The adequacy/quality of both global datasets and proxies range from poor to good at the spatial scale 

needed for most asset valuation. Their applicability still needs to be explored for use in the valuation of 

hydropower assets.

Runoff or streamflow?

	� In a hydrologic model, the difference between runoff and streamflow is that the streamflow is routed 

to the outlet of a watershed. Runoff is distributed across the surface of the watershed, while stream-

flow is channelized (concentrated) and affected by hydraulics (e.g. flow restrictions).

	� Some datasets include only the runoff, because the routing module requires costly computing time. The 

runoff can be used as a proxy (approximation) for streamflow, artificially routed to the outlet and trans-

formed into streamflow by multiplying by the area of the watershed and doing the consequent unit change.

	� When both the runoff and streamflow are available, streamflow is not necessarily a better option. 

It depends on the routing scheme in the model. As shown in Figure 19, the routing of the water in 

some hydrologic models does not correspond with reality (e.g. due to coarse resolution and issues 

in representing topography in models).

	� The use of runoff and its transformation into streamflow is a valid approach when the concentration 

time of the watershed is of the same order of magnitude as the temporal resolution of the data.

Natural processes of interest?

These datasets do not systematically represent all natural processes; for example, climate models do 

not account properly for mountain glaciers (Randall et al., 2007). Furthermore, some climate models 

do not explicitly consider lateral hydrologic processes and surface heterogeneity (Davison et al., 2016). 

Practitioners interested in this option should first get a strong understanding of the dataset and validate 

its adequacy (Appendix G – Validation of hydrologic simulations).

Download and extraction

See the Box Resolution, biases and extraction of raw climatic simulations in Section 5.1 – Raw climatic simulations.

For the extraction of runoff, it is a good practice to extract and consider all points in the watershed. The 

extraction of streamflow is a bit trickier because of the routing scheme. This step should be carried out 

carefully with the map of the routing scheme.
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A

B

Figure 19 Example of the inconsistency between the real-world routing of water in a watershed and the routing 
scheme in a global hydrologic model. Panel A presents a map of the Mississagi watershed (produced by Hatch for 
Brookfield Renewable Power). In natural environments, flow is routed (directed) along the rivers. Panel B presents 
a map of the routing scheme in the ISIMIP ensemble. In models, flow routing is simplified; in this example, it is 
directed along the paths shown by the gray arrows, which are not representative of the actual streamflow routing 
due to their coarse resolution.
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5.6.1. Requirements for selecting global datasets and proxies

	� An adequate dataset with a spatial resolution of at least the same order of magnitude 
as the watershed of interest (see examples of resources and next steps)

	� A good-quality hydrologic baseline

	� A properly calibrated continuous hydrologic model

	� More than 3 months to complete the valuation process

	� Strong expertise in hydrology, climate and climate change, and strong programming 
skills (NetCDF files and gridded products)

5.6.2. Why choose global datasets and proxies?

	� The use of a global hydrology dataset is appropriate when the watershed of interest 
is in a data-poor region (for meteorological and hydrologic observed data) (Krysanova 
et al., 2018).

	� A continuous hydrologic model for the watershed is not available. This could be 
because the organization has either not identified needs that warrant its development, 
or is in the process of developing it. Furthermore, no sets of hydrologic simulations (as 
presented in Section 5.5 – Hydrologic simulations) are available.

	� An organization wants to raise awareness of climate change (Krysanova et al., 2018) 
and manipulate the data to produce tailored figures and graphs.

	� The watershed is sufficiently large for coarser global datasets to provide adequate 
information about changes in the large-scale water balance.

5.6.3. Advantages of global datasets and proxies

	� The hydrologic simulations integrating climate change are readily available for several 
RCPs, GCMs, and sometimes for several hydrologic models.

	� The dataset potentially includes several scenarios of hydrologic drivers such as land 
cover and different water usages, etc.
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5.6.4. Disadvantages of global datasets and proxies

	� The documentation of the datasets is not always clear and the limits of use are not 
well defined.

	� The practitioner may lack confidence in externally produced data.

	� The datasets may not be well suited to the watershed of interest. The performance of 
such datasets range from excellent to poor, and vary by location and watershed scale 
(Krysanova et al., 2018). Thus, the global dataset and proxies option is usually less 
desirable than a calibrated hydrologic model, if available (Section 5.5 – Hydrologic 
simulations).

	� The dataset may be at a very low resolution, lower than the size of the watershed 
of interest.

5.6.5. Next steps

a)	 Follow guidance provided in Appendix  I – Best and good practices for the ensem-
ble approach.

b)	 Go to Section 6.2 – From climate to hydrology or Section 6.3 – From hydrology to energy.

5.6.6. Examples of resources for global datasets and proxies

CMIP5 – World Climate Research Programme 
https://esgf-node.llnl.gov/projects/cmip5/

Coordinated Regional Climate Downscaling Experiment (CORDEX) –  
World Climate Research Programme 
https://www.cordex.org/

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 
https://www.isimip.org/
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5.7. Pre-com puted results from hydrologic simulations

Pre-computed results from hydrologic simulations can be found on websites, data por-
tals, reports and scientific articles. Relevant information includes mean streamflow at the 
monthly, seasonal or annual scale for different time horizons (present and future to apply 
the delta method on the hydrologic baseline), as well as mean-streamflow trends (to apply 
an extension to the hydrologic baseline). This information may be presented in maps, tables, 
figures, etc. Table 6 shows an example of the type of information available in literature at the 
annual and seasonal scales.

Table 6 Example of hydrologic information found in the literature for rivers Chute-à-la-Savane and Passes-Dan-
geureuses. The table presents the annual and seasonal mean and standard deviation (Marie Minville et al., 2009).

5.7.1. Requirements for selecting pre-computed results from hydrologic simulations

	� Relevant results for at least the same time period as the climatic baseline and a future 
period of interest (see Examples of resources below and next steps)

	� A good-quality hydrologic baseline

	� Average expertise in hydrology, climate and climate change

5.7.2. Why choose pre-computed results from hydrologic simulations?

	� An organization is looking at climate change for the first time and wants to assess how 
much effort to invest.

	� The organization has little available time (less than one month) and resources.

	� A continuous hydrologic model for the watershed is not available. This could be 
because the organization has either not identified needs that warrant its develop-
ment, or is in the process of developing it.

	� The organization carried out hydrologic simulations integrating climate change and 
wants to compare them with other studies.
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5.7.3. Advantages of pre-computed results from hydrologic simulations

	� Minimal effort may lead to robust results.

	� Regional information may be available if local data are limited.

5.7.4. Disadvantages of pre-computed results from hydrologic simulations

	� The practitioner is limited by the amount and type of available information. Also, the 
practitioner might not be able to access the raw data used to create figures, tables 
and maps. This can limit the rest of the modeling chain to the least-comprehen-
sive approach.

	� The information might not be available at the appropriate spatial/time scale or for the 
watershed of interest.

	� Several studies of the same watershed can yield different results, leading to confusion.

	� Impacts that are not correlated with mean annual inflows (such as extremes or step 
changes) are difficult to judge without the full data (time series).

5.7.5. Next steps

a)	 Follow guidance provided in Appendix  I – Best and good practices for the ensem-
ble approach.

b)	 Evaluate transferability of data and results if needed (see Appendix D – Transferability of 
data and results).

c)	 Go to Section 6.2 – From climate to hydrology or Section 6.3 – From hydrology to energy.

5.7.6. Examples of pre-computed results from hydrologic simulations

Hydroclimatic Atlas of Southern Quebec – Government of Quebec –  
Environnement et Lutte contre les changements climatiques 
http://www.cehq.gouv.qc.ca/atlas-hydroclimatique/

Water quantity indicators for Europe – Copernicus 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/
sis-water-quantity-swicca?tab=overview
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6Integration of the Baseline(s) 

and of Climate Change Data 
into the Modeling Chain



Integration of the Baseline(s) and of Climate Change Data into the Modeling Chain  | 99 

This section describes where to integrate the baseline(s) and climate change data into the 
modeling chain, as well as how to integrate them – by taking into account the specific chal-
lenges related to data transformation methods at each step of the modeling chain.

Section 6.1 starts with an explanation of the three types of integration (Figure 20). Section 
6.2, 6.3 and 6.4, respectively, cover each model intersection in the modeling chain: from cli-
mate to hydrology; from hydrology to energy; and from energy to value. Section 6.5 provides 
two examples to illustrate the concepts presented and Appendix J - Case Studies provides 
four concrete examples of integration by different hydroelectric organizations.

6.1. Specific case of integration

Figure 20 illustrates three specific types of integration of the baseline climate change data 
into the modeling chain. The types differ according to baseline option (Section 4) and climate 
change data (Section 5). For each type, data transformation is possible at the beginning, as 
well as in between each model (see Section 7.5.1 – Which one to apply and where?).

a)	 The climatic baseline and climate change data are fed into the hydrologic model with 
prior data transformation methods applied to them, if needed. Similarly, the hydrologic 
baseline is fed into the energy model with prior data transformation methods applied to 
it, if needed. This type of integration produces: a value simulation based on the climatic 
baseline; a value simulation based on the hydrologic baseline; and value simulations inte-
grating climate change.

b)	 The climatic baseline is fed into the hydrologic model with prior data-transformation 
methods applied to it, if needed. The hydrologic baseline and the climate change data 
are fed to the energy model with prior data-transformation methods applied to them, if 
needed. The results of this type of integration are the same as type A.

c)	 There is no hydrologic model in the modeling chain. The hydrologic baseline and the cli-
mate change data are fed to the energy model with prior data-transformation methods 
applied to them, if needed. The results of this type of integration are: a value simulation 
based on the hydrologic baseline and value simulations integrating climate change.
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Figure 20 The three types of integration in the modelling chain according to type of baseline and climate change 
data. Panel A shows climate change data feeding the hydrologic model with prior data transformation methods 
applied to it if needed, using both climatic and hydrologic baselines. Panel B shows climate change data feeding 
the energy model with prior data transformation methods applied to it if needed, using both climatic and hy-
drologic baselines. Panel C shows climate change data feeding the energy model with prior data transformation 
methods applied to it if needed, using hydrologic baseline only.



Integration of the Baseline(s) and of Climate Change Data into the Modeling Chain  | 101 

6.2. From climate to hydrology

This section explains how to integrate the climatic baseline and the climate change data 
related to climate (Section 5.1 to 5.4) into the hydrologic model, as shown in Figure 20. It 
starts by presenting the most common and relevant types of data transformation methods 
for climatic simulations/results in Table 7. It then outlines specific considerations at this stage 
of the modeling chain (Section 6.2.1). Section 6.2.2 addresses specific considerations for 
the reduction and adjustment methods on the climatic baseline, while Section 6.2.3 through 
6.2.5 address respectively the extension, the delta and bias correction methods. The direct 
method is not presented, as there are no specific considerations for its implementation. 
Also, note that advantages and disadvantages of each method are not repeated, as they 
appear in Section 3. Section 6.2.6 presents the next steps.

Table 7 presents the most common and relevant types of data transformation methods on 
the climatic baseline and on climate change data prior to their integration in the modelling 
chain at this stage. Refer to Section 3 for descriptions of the various methods: direct, reduc-
tion, adjustment, extension, delta and bias correction.

Table 7 Use of data transformation methods with the baseline and climate change data for the integration of 
climate data/results into a hydrologic model. 
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Climatic baseline •• •• •• •• •• ••
Raw climatic simulations •• •• ••
Post-processed climatic simulations •• •• •• 

*

Weather generators •• ••
Pre-computed results from climatic data •• ••

*Consider this option if there are discrepancies between the climatic baseline from which the hydrologic model 
is calibrated and the raw climatic simulations that are post-processed (see Section 7.4 – Consistency of climatic 
data and time periods).
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6.2.1. Specific consideration: Dataset coherence

At this stage, there are generally three variables under consideration: precipitation, and min-
imum and maximum temperature. It is recommended to feed the hydrologic model with the 
three variables from the same climatic simulation or climate product. A climate simulation/
product is consistent in time and space, and using variables from different simulations in the 
hydrologic model produces physical inconsistencies.

6.2.2. Specific considerations for reduction and the adjustment of the baseline

Where climate change is known to influence the watershed, the reduction of a record longer 
than 30 years – for example the selection of the most recent 30-year period – can be most 
relevant, as the recent past better represents current conditions. However, other important 
information may be lost. See Section 3.2 – Reduction for other advantages and disadvantages.

Having a statistically significant trend in the data due to climate change might be problematic 
for further use. The practitioner might aim for a baseline without any climate change trend or 
might need to remove the climate change trend prior to other data transformation methods. 
In these situations, the baseline can be adjusted (see Section 3.3 – Adjustment).

6.2.3. Specific considerations for the extension of the baseline

Using the climatic baseline and doing an extension can be an interesting way to pro-
duce a future scenario. See Section 3.4 – Extension for recommendations, advantages 
and disadvantages.

If the correction factor is computed from the baseline and can be attributed to climate change 
(Appendix B – Detection and attribution in the context of climate change), it is reasonable to 
extend the trend ~15 years. Indeed, at this time horizon, the emissions scenarios are similar. 
As mentioned in Section 3.4 –Extension, a detection and attribution exercise is strongly rec-
ommended to determine whether the correction factor can be attributed to climate change 
(see Appendix B – Detection and attribution in the context of climate change).

See also the first consideration discussed in Section 6.2.4 – Specific considerations for the 
delta method.
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6.2.4. Specific considerations for the delta method

There are three considerations when opting for the delta method at this stage of the 
modeling chain.

One: as mentioned in Section 3.5 – Delta method, the delta method will project past cli-
mate cycles and past climate trends into the future. This is a limitation of this method and 
it can become problematic for baselines demonstrating strong trends (e.g. temperature). 
Figure 15 of Section 3.5 (Delta method) demonstrates this concept: the projected baseline 
(black line) does not exhibit the same trend as the climatic simulation (red line). Part of this 
limitation can be overcome by adjusting the baseline prior to using the delta method.

Two: the delta method is typically applied to 30-year periods. This time period is typically 
chosen for three reasons: it covers most natural variability; it enables the calculation of 
most relevant statistics (as the minimum number of data for statistical analysis is met); 
and it reduces the risk of finding a significant trend in the data. In some situations, for the 
valuation of assets, a 30-year period is not long enough (e.g. computation of a NPV over 
90 years). The practitioner can use longer future and reference periods if the information 
is available (see the example in Section 6.5.1 – Applying a delta method to a hydrologic 
baseline). If the information is not available, the practitioner should adjust the approach 
and document its limitations.

Three: after the delta method, the practitioner could use the direct method in the rest of the 
modeling chain or use the delta method again at the hydrology-to-energy stage. In the latter 
case, it is recommended that the reference period of the climatic and hydrologic baselines 
be consistent or compared statistically.



Integration of the Baseline(s) and of Climate Change Data into the Modeling Chain  | 104 

6.2.5. Specific considerations for bias correction

There are many specific technical considerations to keep in mind when performing bias 
correction on raw climatic simulations. The first is the potential need for downscaling, prior 
to or during the bias-correction process. Other considerations include: GCM selection 
(see Appendix C – GCM selection methods); the need to adjust calendars into something 
workable by the hydrologic model (for GCMs not using a standard calendar); the proper 
processing of values outside the range of the historical distribution; preserving the climatic 
simulation trend; avoiding physical inconsistencies between variables of the same simulation 
(e.g. minimum and maximum temperatures); and performing bias correction at different 
time scales. These subjects are well documented in the literature (Agbazo and Grenier, 2019; 
Cannon et al., 2015; Haerter et al., 2011; Hempel et al., 2013; Maraun and Widmann, 2018).

Another important consideration at this stage is that even if the bias correction method 
offers several advantages, the bias-corrected and downscaled simulations still have limita-
tions that need to be documented and considered in the rest of the modeling chain.

6.2.6. Next steps

a)	 Apply data transformation, if needed.

b)	Assess the adequacy of the climatic scenarios (see Appendix E – Validation of climate 
products).

c)	 Run hydrologic simulations with climatic scenarios.

d)	 Proceed to Section 6.3 – From hydrology to energy.

6.3. From hydrology to energy

This section explains how to integrate the hydrologic baseline and the climate change data 
related to hydrology (Section 5.5 through 5.7) in the energy model as shown in Figure 20. 
Table 8 presents the most common and relevant data transformation methods for hydro-
logic simulations/results. Section 6.3.1 outlines specific considerations at this stage of the 
modeling chain. Section 6.3.2 addresses the reduction and the adjustment on the climatic 
baseline, while Section 6.3.3 through 6.3.5 address respectively the extension, the delta 
and bias correction methods. The direct method is not presented, as its implementation 
presents no specific considerations. Also, note that advantages and disadvantages of each 
method are not repeated, as they appear in Section 3. Section 6.3.6 presents the next steps.
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Table 8 Use of data transformation methods with the baseline and climate change data for the integration of 
hydrologic data/results into an energy model. 
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Hydrologic baseline •• •• •• •• ••

Simulation based on the climatic baseline •• •• ••

Hydrologic simulations (from Section 5.5 or 6.2) •• •• •• 
* ••

Global datasets and proxies •• ••

Pre-computed results from hydrologic data •• ••

*At this stage, the delta method should be used if there are inconsistencies between the hydrologic model(s) 
used to integrate the climatic baseline (simulation based on the climatic baseline) and the hydrologic simulations.

6.3.1. Specific consideration: regulated vs. naturalized

The most important consideration at this stage is potential inconsistency between the hydro-
logic baseline and the hydrologic simulations (e.g. simulation based on climatic baseline, 
hydrologic simulations, global datasets and proxies, and most often pre-computed results 
from hydrologic data). The hydrologic baseline is tainted by errors and heterogeneities (see 
the Box Hydrologic drivers and limitations of the hydrologic baseline in Section 4.2) and is 
influenced by all regulated upstream reservoirs and hydraulic structures. In other words, 
it inherently records all water management decisions or regulation at upstream reservoirs 
and hydraulic structures. On the contrary, the simulations are often naturalized, meaning 
that they do not take into account water management decisions at reservoirs and hydraulic 
structures. Figure 21 shows an example of the impact of water management decisions on 
a time series of streamflow. The magnitude of this issue depends on upstream reservoir 
storage capacity, and on the time step of interest in the assessment, among other factors. 
For example, upstream reservoirs with moderate storage may impact the monthly timing 
of flows, but average volume may be unaffected. Refer to Section 7.7 – Model scaling and 
Section 7.8 – Benefits of hydrologic and water management modelling.
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Figure 21 Example of the influence of water management decisions on a time series

6.3.2. Specific considerations for reduction and the adjustment of the baseline

The same considerations apply when using the reduction method on the hydrologic baseline; 
refer to Section 6.2.2 – Specific considerations for reduction and the adjustment of the baseline.

As with the climatic baseline, the presence of a statistically significant trend in the hydrologic 
baseline may be problematic for further use in the modeling chain (e.g. projecting a land use 
change trend in the future with the delta method). The adjustment of a hydrologic baseline 
is somewhat more challenging than the same manipulation of the climatic baseline, because 
of the large number of hydrologic drivers.

	� If the correction factor is computed from a simulation, integrating a single hydrologic 
driver (e.g. climate change) would remove the influence of this driver only (e.g. it would 
not remove the influence of land use changes).
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6.3.3. Specific considerations for the extension of the baseline

Using the hydrologic baseline and doing an extension is an interesting option to produce a 
hydrologic projection. See Section 3.4 – Extension for recommendations, advantages and 
disadvantages. However, it presents more challenges than manipulating the climatic base-
line, as the number of drivers in the hydrologic baseline is higher.

	� If the correction factor is computed from the baseline, even when a proper detection 
and attribution has been completed, there is a risk of extending the baseline accord-
ing to a trend caused by multiple hydrologic drivers at the same time (e.g. climate 
changes and land use changes). Also, refer to Section 6.2.3 – Specific considerations 
for the extension of the baseline for a time horizon limit.

	� If the correction factor is computed from simulations integrating one hydrologic driver 
(e.g. climate change), the resulting hydrologic projection ignores the potential future 
influence of other drivers (e.g. land use changes).

See also the first consideration discussed in Section 6.2.4 – Specific considerations for the 
delta method.

6.3.4. Specific considerations for the delta method

When applying the delta method at this stage of the modeling chain, the first and second con-
siderations discussed in Section 6.2.4 – Specific considerations for the delta method still apply.

The first of these considerations – projecting past climate cycles and past climate trends into the 
future – is exacerbated for the hydrologic baseline because of the large number of hydrologic 
drivers. Land use changes and changes in the regulation of upstream reservoirs and hydraulic 
structures through time are also projected in the future. See Section 7.5 – Data transformation.

The issue of regulated baseline versus naturalized hydrologic simulations can also become 
challenging at this stage, as the regulation might impact monthly and annual volumes. See 
Section 7.7 – Model scaling.
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6.3.5. Specific considerations for bias correction

Unlike bias correction of climatic simulations, bias correction of hydrologic simulations is 
less understood and documented in the literature. Bias correction is used in short-term 
hydrologic forecasting (e.g. in ensemble streamflow prediction), but not often for long-term 
hydrologic simulations integrating climate change.

Specific considerations for bias correction of hydrologic simulations, reported in the few 
existing scientific papers, include: the need to properly process the values located outside 
the range of the historical distribution; and the need to respect both the mass balance at 
different locations in the watershed and across the seasons (Snover et al., 2003). The need 
to preserve the hydrologic simulation trend, such as for the climatic simulations, also applies 
(see Section 6.2.5 – Specific considerations for bias correction).

Despite the lack of literature, the practitioner may still find themselves in a challenging posi-
tion where they consider the bias correction of hydrologic simulations to be necessary. For 
example, this could be the case if the bias of a hydrologic simulation is slightly too large for 
the direct method, but the delta method would result in a loss of important information 
(such as changes in sequences). In these situations, the methods described in Section 3.6 – 
Bias correction are applicable, but the practitioner might want to pay special attention to the 
considerations described in the previous paragraph.

6.3.6. Next steps

a)	 Assess the adequacy of the hydrologic simulations (see Appendix G – Validation of hydro-
logic simulations).

b)	 Apply data transformation, if needed.

c)	 Assess the adequacy of the hydrologic scenarios, except for hydrologic simulations and 
pre-computed results from hydrologic baseline. See Appendix G – Validation of hydro-
logic simulations.

d)	 Run energy simulations with hydrologic scenarios.

e)	 Proceed to Section 6.4 – From energy to value.
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6.4. From energy to value

At this stage, the practitioner should have an energy simulation based on the baseline, as 
well as energy simulations integrating climate change.

The direct method is typically the most relevant one at this stage of the modeling chain. 
Indeed, even though other data transformation methods from Section 3 may be numeri-
cally applicable, applying them is generally not recommended anymore, because this would 
bypass the watershed’s physical reality and constraints, such as storage and turbine capacity. 
Such a bypass would blindly modify the timing and amount of energy produced and would 
directly impact asset valuation.

Nonetheless, the energy simulations integrating climate change may have a bias when com-
pared to the energy simulations based on the baseline. As discussed in Section 7, this can 
be problematic, as organizations are often interested in comparing simulations integrating 
climate change with the simulations based on the baseline.

If the practitioner still needs to perform data transformation techniques at this stage of the 
modeling chain, the next section presents general considerations.

6.4.1. General considerations

The practitioner should keep in mind that historical energy values contain information about 
outages, maintenance and dam regulation. Some energy models may represent outages 
and maintenance with an outage factor, and will represent the regulation of the dam with a 
series of automated regulation rules.

As such, practitioners planning to use the extension or the delta method with historical 
energy values will project past outages, maintenance and regulation into the future.

6.4.2. Next steps

a)	 Assess the adequacy of the energy simulations.

b)	 Apply data transformation, if needed.

c)	 Assess the adequacy of the energy scenarios.

d)	 Run value simulations with energy scenarios.
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6.5. Examples

6.5.1. Applying the delta method to a hydrologic baseline

Figure 22 presents an example of the delta method applied to a hydrologic baseline in the 
modeling chain. The delta used in this example can come from multiple sources, and the 
climatic baseline is only used during the hydrologic model calibration.

Figure 22 Example of the modeling chain when the delta method is applied to the hydrologic baseline. The delta 
can be computed with different types of climate change data. The direct method is used in the rest of the model-
ing chain. In this example, the climatic baseline is only used during the hydrologic model calibration.

Panel A of Figure 23 shows the hydrologic baseline (in black) and the hydrologic scenarios 
(in gray) obtained by applying the delta method to 10 hydrologic simulations (RCP 4.5). The 
deltas for each hydrologic simulation are computed between the future (2016–2070) and 
reference (1961–2015) periods, at the annual scale. The delta is applied to the hydrologic 
baseline to obtain 10 hydrologic scenarios. In this example, it is possible to compute the 
delta for periods of 55 years, as it is drawn from the continuous hydrologic simulations pre-
sented in Figure 24. This type of information might not always be available. For example, 
working from the information referenced in Table 6 (Section 5.7 – Pre-computed results 
from hydrologic simulations), the practitioner would have data only for specified 30-year 
periods: 1961–1990, 2010–2039, 2040–2069 and 2070–2099. Also, note that the use of only 
one RCP is not a reasonable practice, as stated in Appendix  I – Best and good practices 
for the ensemble approach. It is used in this example for the sake of clarity and to limit the 
number of figures in the Guidebook.
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Panel B of Figure 23 shows the energy simulations based on the hydrologic 
baseline and on the hydrologic scenarios (simulations based on CC), and 
panel C shows the revenues. Note that the direct method is used between 
the energy and value stages.

The comparison between the traditional method and the method with 
climate change is presented in Figure 25 for revenues and Figure 26 for 
the NPV. As the delta method is used at the hydrologic stage and 
the direct method is used afterward, this comparison is possible 
(see Section 7.6 – Consistency in comparison). Note that the same 
hypotheses were made for the simulation based on the baseline 
and the simulation based on the traditional method (electricity 
prices, cost of operation, etc.).

When compared to the traditional method, simulations integrat-
ing climate change present a favourable result on both revenues 
(Figure 25) and NPV (Figure 26). The uncertainty visible on both 
graphs by the dispersion of the simulations integrating climate 
change is due to natural variability (implicitly represented 
using different initial conditions for each climate model) and 
to the different climate model responses when using the 
same emissions scenario. 
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A)

B)

C)

Figure 23 Example of results obtained when the delta method is applied to the hydrologic baseline. Panel A) 
shows inflows, B) energy and C) revenues. The delta method was applied to the hydrologic baseline (black). The 
delta was computed from 10 hydrologic simulations to produce hydrologic scenarios (to produce 10 gray lines). 
The direct method is used in the rest of the modeling chain to produce simulations based on baseline (black) and 
simulations integrating climate change.
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Figure 24 Example of continuous hydrologic simulations (gray) on which a delta can be computed. The hydrologic 
simulations were produced using a hydrologic model and climatic simulations from one RCP and 10 climate models. 
The delta was computed between the future and reference period of the hydrologic simulation (to produce 10 deltas).

Figure 25 Comparison of simulated revenues based on the baseline (black), on the traditional method (pink) and 
on simulations integrating climate change when the delta method is applied to the hydrologic baseline (gray).

Figure 26 Comparison of the NPV based on a simulation using the traditional method and simulations integrating 
climate change.
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6.5.2. Bias correction of climatic simulations and direct method with the hydrologic 
and climatic baseline

The example presented in Figure 27 features three types of inputs: climatic and hydrologic 
baselines, as well as raw climatic simulations. First, the hydrologic model is calibrated with 
the climatic and hydrologic baseline. Raw climatic simulations are then downscaled and 
bias-corrected with the climatic baseline. The climatic and hydrologic baselines, as well as 
post-processed climatic simulations, are fed into the modeling chain to obtain the results 
presented in Figure 28.

Figure 27 Example of the modeling chain using as inputs the climatic and hydrologic baselines, as well as raw 
climatic simulations. Bias correction and downscaling are applied to the raw climatic simulations prior to their 
integration into the modeling chain.

Panel A of Figure 28 shows the climatic baseline in green, the hydrologic baseline in black and the 
hydrologic simulations fed by 10 downscaled and bias-corrected GCMs simulations for RCP4.5 in 
gray. Panel B and C show, respectively, the energy and the revenues when the direct method 
is used at these stages. Note that the use of only one RCP is not a good practice, as stated in 
Appendix I – Best and good practices for the ensemble approach. It is used in this example for 
the sake of clarity and to limit the number of figures in the Guidebook. Figure 29 compares the 
annual average inflows, energy and revenues for the reference period (1984–2015) and for the 
future period (2016–2045) for simulations based on hydrologic baseline, simulations based on 
climatic baseline and simulations integrating climate change.
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Figure 28 and Figure 29 illustrate some of the challenges the practitioner will face with the 
modeling chain. First, the simulation based on the climatic baseline (reconstructed hydrol-
ogy) appears to be biased, when compared to the hydrologic baseline. This bias can have 
several causes, such as the calibration of the hydrologic model or the time period used for 
the calibration. There is also a similar issue between the simulation based on the climatic 
baseline and the simulations integrating climate change, when compared in the reference 
period (1984–2015). This bias can also have several causes, such as the post-processing of 
climate data or the time period used for the post-processing. These biases are transmitted 
to the rest of the modeling chain, as the direct method is used, and the values for energy and 
revenues produced by the simulations integrating climate change are therefore lower than 
with the baselines. Because of these biases, the practitioner cannot compare directly the 
simulations based on the hydrologic and climatic baseline with the simulations for the future 
period integrating climate change. Doing so would obscure the real climate change signal. 
The practitioner could compare the future and reference periods of the simulations integrat-
ing climate change or apply another data transformation method (delta or bias correction).

Indeed, even if the absolute values are lower because of biases, the conclusion of that specific 
example should be that climate change increases inflow, energy and revenues when simu-
lations integrating climate change for the reference period (1984–2015) and future period 
(2016–2045) are compared (Figure 29). The uncertainty suggested by the dispersion of the 
boxplots of simulations integrating climate change is due to natural variability (implicitly rep-
resented using different initial conditions for each climate model) and to the responses of 
the climate models to the same emissions scenario.
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A)

B)

C)

Figure 28 Example of results obtained from the bias correction of climatic simulations and the use of the direct 
method on the hydrologic and climatic baselines. Panel A) shows inflows, B) energy and C) revenues. The climatic 
baseline (green), the hydrologic baseline (black) and post-processed climatic simulations (gray) are fed into the 
modeling chain. The direct method is used between the hydrology, energy and values stages. The results are 
presented for one RCP and 10 climate models (10 simulations). 
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A)

B)

C)

Figure 29 Comparison of the average A) inflows, B) energy and C) revenues for simulations based on the hydro-
logic (black) and climatic (green) baselines, as well as for simulations integrating climate change (reference period: 
1984–2015 and future period: 2016–2045). Outlier values are marked with a star.
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This section looks at the cross-cutting (applying at several steps) issues when integrating cli-
mate data into the valuation of hydropower assets. This section will consider the consistency 
of information used throughout the assessment, concepts for pre-planning and the careful 
selection of the options presented in Section 3 through 6. While pre-planning does not 
eliminate all technical challenges and surprises, it can help avoid pitfalls and inconsistencies.

Section 7 also provides guidance on how to integrate all of the elements of the modeling 
chains shown in Figure 20 of Section 6.1. However, many considerations related to inte-
gration and coherency remain subject to the needs and expertise of the practitioner. This is 
particularly true, as an accepted standard of practice for climate change integration has yet 
to emerge from the literature, regulations or in practice.

Section 7.1 describes organizational considerations for the integration of climate change; 
Section 7.2 and 7.3 outline considerations when averaging, selecting and presenting results. 
Section 7.4 focuses on data used within the modeling chain and how to ensure coherence of the 
full assessment. Section 7.5 considers data transformation. Section 7.6 focuses on the impor-
tance of making consistent comparisons between historic baselines and future projections. 
The final sections discuss considerations specific to the model’s spatial and temporal scales 
(Section 7.7) and the benefits of hydrologic and water management modeling (Section 7.8).

7.1. Managing the change in organizational practices

When using climate data for the first time, practitioners must anticipate organizational hur-
dles. Good planning is essential.

Indeed, as stated in Section 2 – Methods for income-based valuation and uncertainties, the 
industry’s traditional practice is to use the hydrologic baseline. There is generally a strong 
belief in the ability of the hydrologic baseline (observed data) to adequately represent future 
conditions, despite the shortcomings (identified in Section 4.2 – Hydrologic baseline). Starting 
to think in terms of a climatic baseline is an important step for organizations. It is important 
to acknowledge that both the climatic baseline and hydrologic baseline have recognized 
merits and shortcomings, which should factor into the valuation process.

Also, since the industry lacks a generally accepted best practice, the practitioner should 
understand and communicate early on the options described in Section 3 through 6, and 
seek expert advice when needed.
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7.2. Considerations for selecting and averaging simulations

The modeling chain requires practitioners to deal with several challenges and constraints 
(computational time, human resources, complexity and size of the dataset, etc.). It is not 
always possible to use and/or analyze all data; compromises have to be made between ana-
lyzing all possible data, making informed selections and/or using averages. Climate change 
complicates this situation further, as it implies working with the ensemble approach (larger 
datasets) and a non-stationary climate.

Some sort of selection of data might be necessary prior to their introduction into the mod-
eling chain. While there is no universal way to meet this challenge, here are a few guidelines 
for various stages of the assessment.

	� Simulations should be averaged only during the last step of the modeling chain and 
only for presentation purposes. This also applies to averaging simulations from a same 
emissions scenario (e.g. for several GCMs) or a same GCMs (e.g. for several members/
realization of a same GCM). Averaging simulations flattens interesting characteristics 
of the time series and implies a large degree of information loss.

	� When dataset complexity and size become a challenge, prioritize informed selection 
of few representative simulations over averaging simulations before their integration 
into the modeling chain.

	� The variability of the results should always be considered, be it for the selection of sim-
ulations or for the assessment itself. This can be accomplished by analyzing the 5th, 
50th and 95th percentiles of the ensemble. It is generally recommended to exclude 
the most extreme scenarios, unless required for the assessment

7.3. Considerations for presentation of results

When communicating results of their study, the practitioner might have to use simple 
descriptions or plots that also convey the full range obtained.

	� The practitioner could:

	� Present the entire range of results of the ensemble approach and explain the range 
(several emissions scenarios, GCMs, realization, etc.).

	� Present the range of results by emissions scenarios, GCMs, etc.
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	� Models may be averaged for presentation purposes; however, the variability of the results 
should also be presented (e.g. 5th, 50th and 95th percentiles of the ensemble). The prac-
titioner may also consider using suitable vocabulary. The IPCC 2007 report uses a vocab-
ulary well suited to communicating the results of climate changes studies (IPCC, 2007).

	� Consider displaying percentiles of specific indices of interest (such as change in annual 
streamflow).

	� Consider whether to use absolute numbers (e.g. generation will increase by 1 GWh/yr) 
or relative numbers (e.g. generation will increase by 5%).

	� When comparing two periods of time (e.g. reference and future periods in a boxplot graph):

	� Use the same time period (e.g. 30 years).

	� To minimize the impact of fluctuations due to natural variability, consider using a 
time period of at least 30 years.

	� Presenting select individual simulations may convey interesting information.

7.4. Consistency of climatic data and time periods

To avoid introducing inconsistencies and biases in the valuation, consistency of climatic data 
throughout the modeling chain is essential. As stated in Section 6.2.1 – Specific consideration: 
Dataset coherence, the practitioner should not interchange precipitation and temperature 
from different products or simulations because they are part of a consistent physical system. 
For this reason, each product or simulation should be treated independently.

Consistency of the climatic baseline is also important. The climatic baseline is used several 
times during the valuation assessment: to calibrate and validate of the hydrologic model, to 
post-process climate data and to make simulations (reconstructed hydrology). For discus-
sion purposes, this Guidebook focuses on precipitation, as it is a major driver of hydrology 
and therefore of hydropower production. As shown in the Box Variation in Precipitation 
Data, different precipitation products have characteristics unique to their development. The 
same concepts apply to temperature.
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VARIATION IN PRECIPITATION DATA

Precipitation products typically have characteristics unique to their development. Figure 30 shows accu-

mulated precipitation data at a single location for the period 2007–2012, derived from different products. 

The brown line shows the observations from a nearby meteorological station. The green line is from the 

Canadian Daily Gridded Precipitation product (Hutchinson et al., 2009), which is a gridded dataset that 

spatially interpolates weather station data and accounts for undercatch. The black line is from the Canadian 

Precipitation Analysis (CaPA – Mahfouf, Brasnett and Gagnon, 2007), which uses an optimal interpolation 

algorithm to merge meteorological station observations and radar on a background short-range weath-

er-forecast product. While all three are derived from the same core precipitation station data, differences 

in their methodologies and algorithms result in nominally different characteristics, which can influence the 

model simulation. For example, the CaPA product clearly shows greater winter precipitation, which at this 

particular site indicates a greater snowpack. These products also represent intense precipitation events, 

such as convective storms, differently (not shown). A storm may miss or directly hit a gauge, causing a 

large differences relative to the areal averaged gridded products. A similar phenomenon can occur with the 

ANUSLIN interpolation between gauges of Hutchinson et al., (2009), whereas the CaPA product may detect 

a storm from the NWP output. These discrepancies can worsen when gauge density is low.

A)

B)

Figure 30 Accumulated precipitation for three climate products during summer (panel A) and winter (panel B).
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Systematic biases could be introduced, particularly in hydrologic simulations, if the cli-
matic baseline is inconsistent throughout the modeling chain. Each of the three products 
in Figure 30 could have been chosen to calibrate a hydrologic model. With a single hydro-
logic baseline, the model parameters would compensate for the different precipitation 
data during calibration to simulate the same hydrologic time series. The hydrologic sim-
ulation could vary considerably if the parameter differences were significant enough and 
the practitioner interchanged the precipitation products. For this reason and whenever 
possible, the same precipitation product should be used throughout the modeling chain 
(model calibration, post-processing of climatic simulations and reconstruction of hydrol-
ogy). For example, if the Canadian Gridded Daily Precipitation (Hutchinson et al., 2009) 
dataset is used to post-process climatic simulations, it should also be used for model 
calibration and to simulate the reconstructed hydrology. Otherwise, this could result 
in an inconsistency between the reconstructed hydrology and hydrologic simulations 
integrating climate change (based on climatic scenarios), when compared on the same 
period (see Section 7.6 – Consistency in comparison).

The selection of a representative period of time (e.g. dry, wet, moderate periods) can also 
influence the model characteristics by influencing the parameters during the calibration 
process (KlemeŠ, 1986; Merz et al., 2011). For example, if the hydrologic model is calibrated 
using a short, hot and dry period and the climatic simulations are post-processed using a 
short, cold and wet period, it will introduce inconsistency in the modeling chain: the hydro-
logic simulations integrating climate change (based on climatic scenarios) might show a wet 
bias. Because of the potential sensitivity of the model results to precipitation, it is best to 
ensure the selection of a time period long enough to cover most natural variability and that 
is consistent throughout the modeling chain (climatic scenarios, calibration of hydrologic 
model, reconstruction of hydrology).

If consistency cannot be ensured across the time period or the climatic baseline, the delta 
method may be better suited to asset valuation. An alternative is to test the sensitivity of 
energy production to multiple climate baselines and check for consistent outcomes.
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7.5. Data transformation

As stated in Section 2, the output from the climate model, hydrologic model and energy 
model would ideally be an accurate simulation of real-world physics. In practice, a model is 
an abstraction of reality, or a plausible reality, where some form of transformation/manipu-
lation of the data is required to most accurately reflect actual outcomes.

Section 7.5.1 provides guidance on where in the modeling chain to apply data transformations; 
Section 7.5.2 outlines considerations when trends are present in the baseline dataset; and 
Section 7.5.3 considers the potential error of over-fitting statistical functions to transform data.

7.5.1. Which one to apply and where?

At each stage of the modeling chain, the practitioner needs to decide which transforma-
tion method to use (direct, extension, delta method or bias correction) before integrating 
data into the next step of the modeling chain. The adequacy of the simulation before data 
transformation, compared to the baseline, can provide the practitioner with hints on which 
method to select.

The direct method is best reserved for simulations that have relatively small biases for every 
index of interest, using criteria described in Appendix G.3.2 – Validating the hydrologic sim-
ulations. This represents a near-ideal scenario for the practitioner. The delta method is rec-
ommended when the performance of the simulation is acceptable according to Appendix G 
– Validation of hydrologic simulations, but biases remain (between the simulations and 
baseline) that cannot be justifiably modeled or corrected. This may include difficulties such 
as unexplainable trends in the baseline or a hydrologic influence that cannot be justifiably 
extended into future-period simulations. Bias correction is recommended when the incon-
sistencies in the simulation data, compared to the baseline, can be statistically well described 
and the correction applied reliably to the future period (see specific considerations for bias 
correction in Section 6.2.5 and 6.3.5). In considering these options, the practitioner should 
recognize that scientific and engineering literature documents multiple bias-correction and 
delta methods, and that each one has particular strengths and weaknesses (Chen et al., 
2013a; Maraun and Widmann, 2018). Refer to Appendix E – Validation of climate products 
to assess strengths and weaknesses of climatic simulations.

The practitioner must also consider which type(s) transformation to apply. For example, is 
a simple transformation for a difference in the mean appropriate, or should the method be 
applied across different quantiles (see Section 3.5 – Delta method and Section 3.6 – Bias 
correction)? It may also be pragmatic to apply the transformation on a seasonal or monthly 
basis, if warranted by the data. For the purpose of asset valuation for a single run-of-the-river 



Cross-Cutting Issues and Guidance for the Modeling Chain  | 125 

station, it may not be as essential to accurately represent flow peaks, since these will be 
beyond the station’s turbine capacity. It would certainly be more important for a dam-safety 
study, unless this unduly impacts construction costs. Appendix H – Sensitivity Analysis can 
be used to assess the sensitivity of the final results. These considerations are prudently 
balanced against the needs of the organization in terms of scope and resource availability.

The practitioner must also choose at which stage(s) of the modeling chain to apply a selected 
transformation method. In general, it is best to apply the method as early in the model-
ing chain and as close to the source as possible, to preserve mass and energy balances. 
If using the climatic baseline, the transformation method must be applied to precipitation 
and temperature data before they are integrated into the hydrologic model. To preserve 
the water balance, precipitation entering the model must be equal to the change in storage 
and discharge from the model. A subsequent manipulation of flow (e.g. applying a post-cor-
rection) could violate the water balance by artificially adding or removing water from the 
system. This will inherently impact the energy simulations. This water balance should be 
respected spatially within the watershed and also across time and seasons (Snover, Hamlet 
and Lettenmaier, 2003). For example, if the hydrologic simulation appears biased when com-
pared to the baseline, it might be advisable to apply bias correction or the delta method. 
Known deficiencies should also be corrected, for example with the inclusion of a water man-
agement model to account for changing regulation regimes.

7.5.2. Trends

Trends in the baseline can quickly become challenging when conducting data transforma-
tions. As mentioned previously, identifying the cause and dealing with the trend are highly 
recommended (see Appendix B – Detection and attribution in the context of climate change) 
prior to proceeding with the next step. Failing to deal properly with a trend may result in 
unrealistic or implausible simulations.

For trends in historic data that are known to have a non-climatic origin, it is advisable to preserve 
or include them in a model to promote consistency, although no consensus exists on this topic. 
If a watershed has experienced major changes in land use over the years, for example, it is 
advisable to select a hydrologic model that can take those changes into account and replicate the 
associated trends. (see Appendix F – Selection and calibration of a hydrologic model).

The presence of a trend in the data can influence the bias correction, delta and extension 
methods, as seen in Figure 31. In this example, both data series are identical, although a 
strong trend was added for illustration. It is clear that the trended series has a wider range of 
variability (dashed lines) and standard deviation. If this variability were used carelessly in the 
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bias correction, delta or extension method, the day-to-day variability would become greatly 
exaggerated and not represent realistic conditions. Removing trends (see Section 3.3 – 
Adjustment), cycles and breakpoints (abrupt changes) from the dataset could be an import-
ant step to enable the transformation to represent realistic day-to-day weather patterns 
in the climatic or hydrologic data. The application of the trend from a climate dataset or 
re-application of observed trend should be carefully thought out by the practitioner and is 
best informed by a thorough understanding of its cause.

For future climate change simulations, the uncertainty will likely be dominated by the emissions 
scenarios and GCMs as lead time increases (see Section 2.3 – Sources of uncertainty). For this 
reason, it is not recommended to continue trends or cycles into the long-term future without 
sound justification or full understanding of their physical causes. A practitioner should be able 
to review a simulation and determine if it is plausible for the watershed and generating station.

Figure 31 An illustration of the impact of a trend in a synthetic dataset on the statistical variability (min./max. 
in this case) of the data. The green time series is identical to the black time series, but with a strong trend added. 
Histograms to the right show the greater variability of the time series when a strong trend is added (green).
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7.5.3. Over-fitting

Care must be taken to avoid over-fitting the data. This can be a problem in the extension 
method and during the trend-preservation step of bias-correction methods (see specific 
considerations for bias correction in Section 6.2.5 and 6.3.5). The problem can also arise 
during model calibration if the period used is too short.

Figure 32 shows an example of over-fitting, which occurs when the correction or function is fit 
too closely to limited data and loses its generalization ability, which invalidates its use for future 
conditions. In Figure 32, the high order polynomial fits the dataset (in blue) perfectly. However, 
new data added in the existing range (in green) have a much worse fit than if a linear function 
would have been used. Also, some functions, such as polynomials, splines and exponential 
functions are well known to risk over-exaggerating at the edges of the dataset. For example, 
continuing the curved function in Figure 32 to an x-axis value of less than 1 or greater than 
11 (where there is data) would result in y-values well beyond the observed range of the values in 
question. This phenomenon is not necessarily the result of over-fitting, but remains an important 
consideration when applying a statistical function beyond the limits of observed data.

Figure 32 Over-fitting example. The function represented by the dashed line (polynomial) perfectly fits the base-
line data (blue) but is not as generalizable as the linear fit of the data. This can be seen when validation data 
(green) is considered.
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7.6. Consistency in comparison

Mathematician George Box famously said, “all models are wrong, but some are useful.” It is 
highly unlikely that a model will produce a perfect simulation. To be able to discern reason-
able difference from an error that needs to be rectified, the practitioner should have good 
prior knowledge of the system and establish reasonable targets and thresholds for varia-
tions from these targets. The practitioner may also do a sensitivity analysis to determine if 
the results obtained produce a meaningful difference in the outcome of the modeling chain 
(i.e. the asset value). If the results produce a meaningful difference, the decisions or models 
that lead to the outcome should be re-evaluated.

Consistency is important when doing comparisons within the assessment. The climatic and hydro-
logic baselines serve as the starting point for comparison. Hydrology and energy production may 
change due to many factors besides climate change, such as shifts in regulatory regimes, water 
management practices, market conditions or land use. As discussed in Section 4.2 –Hydrologic 
baseline, this can make the hydrologic baseline more difficult to use and even complicate model 
calibration. However, the consistent application within a model of an element such as a new 
regulatory regime could produce a more accurate comparison. Regardless of the baseline cho-
sen, the practitioner should be able to identify and explain differences with historic conditions. 
Consistency concerns may also impact the selection of climate change data (Section 5) and the 
integration of that information into the modeling chain (Section 6).

When the purpose of an evaluation is to inform decisions about an upgrade or major over-
haul of a generating station, a key question often asked is: How will future conditions differ 
from baseline conditions? The natural inclination of most organizations is to compare the 
future scenarios obtained from the modeling chain to the results obtained using the tradi-
tional method. This is reasonable, as the traditional method is likely engrained in organiza-
tional processes and planning assumptions, and enables ready comparisons with existing 
studies. The results obtained using the traditional method may not be ideal, however, for a 
direct comparison with a future scenario (e.g. inconsistencies in the modeling chain leading 
to biases in the simulations). Practitioners should pay special attention to help ensure that 
future scenarios are properly integrated. In a real application, the modeling chain may yield 
implausible results for energy produced or asset value. A diagram such as Figure 30, which 
shows accumulated precipitation for different climatic products during summer, can help 
identify differences that may be noticeable only over long periods of time.
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When results are implausible, the most robust solution would be to identify the source of the 
discrepancy and correct the issue(s) in the models. Otherwise, the practitioner must choose 
between further transformation or using the delta method to produce the final results (e.g. 
energy production or asset value) of the modelling chain. Before applying further transfor-
mations, the practitioner should seek to understand if the differences significantly affect 
the asset’s determined value compared to other, external costs. For example, the potential 
costs of geotechnical or structural modifications may greatly exceed differences in energy 
production due to minor errors in the modelling chain.

An important source of discrepancy for the practitioner to consider is selection of the appropriate 
baseline period. The accepted recommendation for a period of climatologically relevant record 
is at least 30 years. During this time, however, the watershed may have experienced physical 
changes (potentially due to climate change), or regulatory changes that impact the flow available 
for hydropower production. Major outages or asset changes might also have impacted historic 
energy production or efficiency factors used for future simulations. The practitioner must ask: 
“How representative is the baseline?” Ideally, the baseline will consider a long period, but a practi-
tioner may need to consider and justify a shorter period or multiple periods for the assessment.

7.7. Model scaling

The impact of simplifying assumptions in the modeling chain can depend greatly on the 
spatial and temporal scale of the models being considered. The IHA (2019) recommends a 
tiered approach to modeling efforts, increasing the level of detail as warranted. For example, 
models running at a monthly timestep may be sufficient on large stable systems that have 
little day-to-day fluctuation. This could simplify the sources and integration of climate data, 
favouring simpler techniques. In contrast, a model chain for a highly managed peaking river 
or cascade of stations may require models operating at a fine time resolution and spatial 
scale. The suitable integration of climate data into this model chain is more likely to require a 
water management model and greater care with climate data selection, transformations and 
overall integration. The interacting factors are likely to produce a more sensitive outcome at 
the end of the modeling chain. This can also be true when using a nested modeling approach 
where a coarse resolution model is used to feed a higher resolution model for specific parts 
of a watershed or timescales of interest.
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7.8. Benefits of hydrologic and water management modeling

As noted in the previous sections, the integration of climate change in the modeling chain 
might necessitate the implementation of a hydrologic model. There are several distinct advan-
tages to the inclusion of hydrologic modeling that an organization should consider. However, 
these advantages become manifest only with proper calibration and understanding of the 
model (see Appendix F – Selection and calibration of a hydrologic model). It is worth noting 
that most of these benefits accrue when the model is either developed by or for an organiza-
tion specifically. Access to externally developed hydrologic simulations (Section 5.6 – Global 
datasets and proxies) can save an organization time and effort if the simulation is properly 
validated for the watershed, but will not provide the same degree of flexibility or transfer-
ability. Indeed, the practitioner should determine if the need and methods that resulted in 
the development of the hydrologic simulation are relevant to the asset valuation application, 
remembering that each model is built for a purpose and derived from choices made by the 
developer. The following is a non-exhaustive list of benefits of developing a hydrologic and/
or water management model (i.e. using a climate baseline and starting the modeling chain at 
Section 6.2 – From climate to hydrology instead of Section 6.3 – From hydrology to energy).

The benefits of modeling inflow with a purpose-built hydrologic model include knowledge 
gained by the organization that can be transferred to other business activities (operations, 
project design, etc.). The hydrologic model can be used in other studies to identify the causes 
of trends in the hydrologic baseline (land-use changes, climate change, natural variability, 
etc.). This model can simultaneously account for multiple drivers, such as land-use changes 
and climate change, and analyze the relative influence of each one.

A water management model provides the ability to consider water management decisions, 
which may be implicit in the historic record (regulated) or may not be well represented in 
hydrologic simulations (naturalized, in most instances). Operator decisions, new infrastruc-
ture and changes in regulatory regimes can change historic outcomes on managed river 
systems. These influences should be considered not only in baseline selection, but also 
when preparing simulations and scenarios, as the historic flow or energy may not be a rep-
resentative baseline. Also, using a water management model with an optimization routine to 
route historic inflows could result in deviations from past operations if using the hydrologic 
baseline. The inclusion of a water management model allows for the application of a consis-
tent set of operations and rules to the entire period (reference and future). It also allows the 
operational rules/limits to be modified to accommodate potential changes in conditions, reg-
ulatory regimes or water availability under climate change. For dam-safety considerations, 
the ICOLD recommends reoperation of reservoirs as a first adaptation step (ICOLD, 2016).
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Conclusion

In conclusion, the Guidebook provides guidance for the 
integration of climate change impacts in the value of hydro-
power assets. Section 1 provides a quick way to explore 
the possible links between climate change impacts and the 
valuation of an asset. Moreover, it identifies the need to 
develop methods to integrate climate change impacts in 
other climate-sensitive subcomponents of asset value 
other than energy and revenues, such as the provision 
of power and ancillary services, electricity demand, 
cost of action, cost of inaction, external costs and 
useful life of assets.

Sections 2 to 7, as well as the appendices, present 
various methods for integrating climate change 
data into asset valuation, along with their advan-
tages and disadvantages. These provide the 
practitioner with alternatives to the traditional 
practice of using the hydrologic baseline to proj-
ect the future. The practitioner is encouraged 
to choose the method most appropriate to 
particular watershed systems, organizational 
structure and practices, the availability of 
climatic and hydrologic information, and 
other elements. Another factor influenc-
ing the choice of method is how best to 
balance other uncertainties surround-
ing business decisions. The options can 
also be used in a complementary way, 
starting with the less comprehensive 
and then refining the analyses.
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In the process of creating the Guidebook, a case study with each hydroelectric partner was 
carried out. To conclude, we would like to share some experiences and advice related to the 
various case studies.

The several options presented in this Guidebook, as well as the introduction of concepts and 
information, can be overwhelming, particularly for anyone new to climate change studies. As 
Guillaume Jean Tarel, neighbouring power networks advisor at Hydro-Québec put it: “It is not 
at all trivial and there is a relatively high risk of making conclusions using data that are not fit 
for purpose.” For this reason, we suggest that practitioners with little or no experience in this 
area secure appropriate professional help.

The potential complexity and challenges along the modeling chain can cause practitioners 
to get stuck on technical details and lose sight of the big picture. When this situation arose 
during the Ontario Power Generation case study, Kurt C. Kornelsen, Senior Manager in Water 
Resources, said: “Let’s complete the whole modeling chain first with the available informa-
tion. If climate change has a meaningful influence on the value of the asset, then we can 
refine the assessment.”

Finally, the amount of results and the acknowledged uncertainty surrounding climate change 
can prevent decision-makers from acting. On this point, Marie-Claude Simard, the Head of 
expertise in Hydraulics and Hydrology and responsible for climate change adaptation at 
Hydro-Québec Production, advises: “We need to show what is clear and undeniable about 
climate change, not just what is uncertain.”
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Appendix A – Glossary

Baseline Data judged to best represent the past or current state of a system.

Baseline period Time period for which baseline data are available. Similar, but not synonymous 
with the reference period.

Climate model A numerical representation of a climate system based on the physical, chemical and 
biological properties of its components, their interaction and feedback processes, 
and accounting for all or some of its known properties. Regional climate models (RCMs) 
typically cover a region of the globe while global climate models (GCMs) cover the 
entire globe (adapted from Charron, 2016).

Climate products Weather station data, observed gridded products, reanalysis, climatic simulations 
and climate scenarios.

Climatic simulation Raw, downscaled and/or post-processed climate model simulations, as well as climatic 
simulations from weather generators.

Day-to-day behavior Refers to the daily data, the sequences and the timing of events in observations or 
simulations. More specifically, climate models do not represent the day-to-day behavior 
of climate observations due to: the chaotic nature of the climate system, and their 
sensitivity to initial conditions. Climate models reproduce the statistical properties 
(mean, variance, inter-annual variability, etc.) of the observed records.

Data transformation 
method

Generic term used to represent any deliberate manipulation of a set of observed or 
simulated data, usually with the goal of increasing its plausibility and/or making it easier 
to work with. In the context of this Guidebook, these include delta, bias correction, 
reduction, adjustment and extension methods.

Driver A cause of change. 

Downscaling A method that enables climate-model output data to be delivered over a finer 
resolution grid. The method can either be dynamical (e.g. RCMs) or statistical.

Emissions scenario A plausible representation of the future development of emissions of substances that 
are potentially radiatively active in the atmosphere, such as greenhouse gases and 
aerosols. An emissions scenario is based on assumptions regarding drivers such as 
demographic and socioeconomic development, and technological change (adapted 
from Charron, 2016).

Energy model A model used to simulate energy at a dam. The model considers inflows/reservoir 
levels, asset characteristics, operational management rules and constraints.

Ensemble approach A way to account for uncertainties related to unknown future events and processes 
by integrating several options and combinations at each step of the modeling chain. 
For climate change studies, the ensemble approach typically includes simulations for 
various emissions scenarios, climate models, post-processing techniques, etc.

Global climate models See climate models.

Gridded observations Weather observations transposed on a grid using different techniques such as interpo-
lation and kriging.

Hydrologic model A simplification of a real-world system that aids in understanding, predicting, and 
managing water resources. In this Guidebook, a hydrologic model is typically used 
to simulate inflows to a reservoir or to a generating station. The model may include 
a routine for water routing. In most hydrologic models, reservoir operations are sim-
ple representations.

Internal variability Variability obtained by a single GCM when it is run with slight perturbations in initial 
conditions or parameters. Internal variability is often used to approximate natural 
variability (see definition).

Modeling chain A sequence of numerical models (e.g. climate models, hydrologic models, energy 
models and value models).

Natural variability Fluctuations (in climate, in hydrology) that occur regardless of anthropogenic trends. 
This includes chaotic fluctuations as well as cycles on many timescales (e.g. multi-year, 
decadal and multi-decadal).
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Naturalized A term used to qualify hydrologic simulations that do not take into account water 
management decisions and/or regulated operations at upstream reservoirs and 
hydraulic structures.

Post-processed Downscaled and/or bias-corrected climatic simulations.

Projection A model’s prediction of a future state based on assumptions, such as potential socio-
economic and technological developments, that are subject to uncertainty (adapted 
from Charron, 2016).

Reanalysis An estimate of historical atmospheric and oceanic temperatures, wind, current, and 
other meteorological and oceanographic quantities, created by processing past mete-
orological and oceanographic data using fixed state-of-the-art weather-forecasting 
models and data-assimilation techniques. Reanalyses facilitate the consideration of 
numerous climatic variables and are also used to validate RCMs and GCMs in the 
current climate, and to drive RCM simulations (adapted from Charron, 2016).

Reconstructed hydrology Hydrologic simulation based on climatic baseline.

Regional climate models See climate models.

Regulated A term used to qualify a hydrologic baseline influenced by operations at upstream 
reservoirs and hydraulic structures. This term can also be used to qualify hydrologic 
simulations that take into account upstream reservoirs and hydraulic structures with 
water management models.

Reference period A period of time from the recent past. Similar, but not synonymous with the base-
line period

Scenario A plausible, coherent and internally consistent description of a system. In the context 
of this Guidebook, a scenario represents the evolution in the climate, hydrology and/
or energy for a given period, using a specific data transformation method, and under 
specific assumptions about the evolution of greenhouse-gas emissions and other 
factors that may influence future climate. Baselines and simulations integrating climate 
change serve as the raw material for constructing a scenario (adapted from Charron, 
2016).

Simulation The outcome of running a model for a certain period of time, ranging from a few years 
to millennia (in the past or future). A simulation can be run at various time intervals 
(minutes, hours, days, months, etc.) (adapted from Charron, 2016).

Simulation based  
on the baseline

Simulations made with a model or a series of models and that are fed by a baseline

Simulation integrating 
climate change

A simulation made with a model or a series of models that were initially fed by an 
emissions scenario and climatic simulations.

Water management model A model that uses the inflow from the hydrologic model and includes a routine for 
water routing to move water between sub-catchments and through reservoirs, dams 
and hydraulic structures. It explicitly represents decisions related to storing and 
releasing water. Model options range from simple (defined rule curves) to advanced 
optimization routines that explicitly seek to maximize some criteria while respecting 
a series of constraints such as regulatory limits. A water management model is some-
times embedded in hydrologic models and energy models.

Weather Generator A numerical model that produces synthetic climatic simulations based on the statistical 
characteristics of observed weather.
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Appendix B – Detection and attribution 
in the context of climate change

The detection of a trend and its attribution to one or several causes is considered important 
at many points in this document. This Appendix summarizes some key general definitions 
and concepts associated with detection and attribution in the context of climate change. 
Most of what follows is extracted from reference documents and publications originating 
from both the field of climate science and of causal inference (Hegerl et al., 2007, 2010; IPCC, 
2014; Pearl, 2009). They reflect the established principles on this topic.

B.1 Definitions of detection and attribution

The IPCC defines detection as the process of demonstrating that climate, or a system affected 
by climate, has changed in some defined statistical sense, without providing a reason for that 
change. For instance, under a statistical framework, an identified change is detected in observa-
tions if its likelihood of occurrence by chance alone is determined to be small (e.g. <10%).

The IPCC defines attribution as the process of evaluating the relative contributions of mul-
tiple causal factors to a change or event with an assignment of statistical confidence. More 
precisely, attribution seeks to determine whether a specified set of external forcings and/
or drivers caused a detected change in the climate system, whether the change involves a 
climate variable (e.g. temperature, precipitation) or an impact-related variable (e.g. runoff, 
flooding, agricultural yields).

To evaluate the causal contribution of a given factor to a given change, the IPCC proposes a 
two-step test. Step one: the detected change must be consistent with combined estimated 
responses to anthropogenic and natural forcings. Step two: the detected change must be 
not consistent with alternative, physically plausible explanations that exclude important ele-
ments of anthropogenic forcings.
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B.2 Need for detection and attribution of trends

Consider two examples that highlight the importance of detection and attribution studies. 
Note that these examples are for the prediction of high flows. Therefore, the methods used 
differ from the one suggested in this Guidebook. However, the same concepts apply to the 
valuation of assets. These examples highlight the need to develop a better understanding 
of not only a trend’s cause, but also the role of each climatic and hydrologic driver before 
integrating climate change into the valuation of assets.

Luke et al., (2017) assessed different statistical distributions to predict flood frequencies. The 
cause(s) of the trend in flood frequencies was not identified prior to the exercise. The results 
(Figure B1) show that the extension of a trend can lead to poor results and that the use of 
a stationary statistical model, even if relevant in most cases, can also lead to poor results.

The second example, presented in Figure B2, is provided by François et al., (2019) and is 
of particular interest as it could be tempting to visually attribute the cause of the trend to 
climate change.

“The Red River of the North at Fargo (North Dakota, U.S.) is a particularly salient 
example of non-stationary stream flow (Figure  B2) (Mueller and Foley, 2014). 
Although flagged as regulated by the U.S. Geological Survey, the U.S. Army Corps 
of Engineers (USACE) demonstrated that changes in streamflow beginning in the 
early 1940’s (Villarini et al., 2009a) cannot be explained by flow regulation (see 
discussion in Serinaldi and Kilsby, 2015); instead, tree-ring analysis has shown 
that the river experiences “high and low flood modes […], which extend from 
several decades to nearly a century” (George and Nielsen, 2003).” 
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A)

B)

Figure B1 Example of results in the study by Luke et al., (2017). Panel A shows the first half of the streamflow 
record (black) on which the statistical distributions are fitted. It also shows two types of stationary statistical dis-
tribution and their confidence intervals (in yellow and in blue) and a non-stationary statistical distribution. Panel 
B shows the second half of the record to validate the statistical distributions. In this situation, the stationary sta-
tistical model in blue was the best choice to predict the future.

Figure B2 Annual peak flow for the Red River of the North at Fargo, North Dakota. Dashed curves show trends for 
various periods (François et al., 2019)
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B.3 Articulation with causal theory: necessary and sufficient causation

It is of interest to emphasize the consistency of the above two-step test in the more general 
context of causal theory.

David Hume, 18th Century Scottish philosopher, defined causality as: “an object followed 
by another, where, if the first object had not been, the second never had existed.” In other 
words, an event E is caused by an event C if and only if E would not have occurred were it 
not for C. According to this definition, causality requires a counterfactual approach in which 
event C is removed, and the plausibility of event E is assessed. The fundamental concept of 
causality implied by Hume’s qualitative definition is still relevant in the standard causal theory 
(e.g. Pearl causal theory) used nowadays. The standard causal theory states that two distinct 
facets of causality should be distinguished: necessary causation, where the occurrence of 
E requires that of C but may also require other factors; and sufficient causation, where the 
occurrence of C drives that of E but may not be required for E to occur.

These concepts of causal theory provide a better understanding of the two-step attribu-
tion definition given by the IPCC: consistency with the estimated responses to combined 
anthropogenic and natural forcings correspond to sufficient causation; and inconsistency 
with alternative, physically plausible explanations that exclude anthropogenic forcing corre-
sponds to necessary causation.

B.4 Importance of mechanistic understanding

The necessary and sufficient causation rely on what is often referred to as a difference-mak-
ing concept of causality, one based on experimentation and on testing the influence of a 
given factor on a given outcome. This approach is often considered insufficient: while it may 
provide convincing evidence of the existence of a causal link, it does not provide any under-
standing of this causal link. Understanding usually relates to accessing the knowledge and 
description of the mechanisms underlying the causal link.

One can therefore consider mechanistic understanding as a third, qualitatively distinct, con-
dition deemed necessary to prove causality, with the other two being the necessary and 
sufficient causation described previously.

While there are differences between the mechanistic and difference-making concepts of 
causality, there are also close connections: on the one hand, our knowledge of underlying 
mechanisms guides our causal assumptions; while on the other, evidence of causal relation-
ships helps us discover mechanisms.
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B.5 Single step versus two steps

Attribution in the context of climate change establishes a methodological distinction between 
single-step and two-step attribution. Note that the distinction is merely methodological; the 
underlying causal definition is the same.

For example, increased greenhouse gas concentrations may be a driver of an observed 
change in the climate system. In turn, changed climate may be an external driver of impact-re-
lated aspects such as crop yields or glacier mass.

Single-step attribution to external forcings comprises assessments that attribute an observed 
change within a system to an external forcing based on explicitly modeling the response 
of the variable to external forcings and drivers. Modeling can involve a single comprehen-
sive model or a sequence of models. The attribution step involves detection of a significant 
change in the variable of interest and comparison of observed changes in the variable of 
interest with expected changes due to external forcings and drivers (typically derived from 
modeling approaches).

Two-step attribution to external forcings comprises assessments that attribute an observed 
change in a variable of interest to a change in climate and/or environmental conditions, plus 
separate assessments that attribute the change in climate and/or environmental conditions 
to external drivers and external forcings. An example would be the multistep attribution of 
declining marine calcification to rising levels of atmospheric carbon dioxide (i.e. changes in 
marine calcification are attributed to changes in ocean chemistry, which in a separate step 
is attributed to changes in atmospheric carbon dioxide). In the case of climate extremes 
and rare events, for example, it may not always be possible to reliably estimate from obser-
vations whether there has been a change in frequency or intensity of a given type of event. 
Nevertheless, it may still be possible to make a multistep attribution assessment of an indi-
rectly estimated change in the likelihood of such an event, if there is a detectable change 
in climatic conditions that are tightly linked to the probability of that event (for example, a 
change in the frequency of rare heat waves may not be detectable, while a detectable change 
in mean temperatures would lead to an expectation of a change in heat-wave frequency). 
This method involves a sequence of analyses, including synthesis of observational data and 
model applications. The assessment of the link between climate and the variable of interest 
may involve a process model or statistical link, for example, or another downscaling tool. It 
is recommended that the component assessments (or steps) be made explicitly (each with 
its own level of confidence), along with an overall assessment of the combined result. The 
overall assessment will generally be similar to or weaker than the weakest step.
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B.6 Examples

To summarize, there are three components to causal attribution:

	� counterfactual inconsistency

	� factual consistency

	� mechanistic understanding

For instance, let us revisit the arguments supporting the attribution of climate change to 
human activities. Note that in this example, the counterfactual inconsistency can be verified 
with counterfactual simulations (natural forcings only) available in the CMIP ensembles.

	� Counterfactual inconsistency: Historical estimates of past climate changes suggest 
that the recent changes in global surface temperature are unusual. Computer-based 
climate models are unable to replicate the observed warming under natural forcings 
only. In other words, natural forces alone (such as solar and volcanic activity, as well as 
internal climate variability) cannot explain the observed warming.

	� Factual consistency: Historical estimates of past climate changes are consistent with 
anthropogenic emissions. Computer-based climate models always replicate the 
observed warming when forcings include human greenhouse gas emissions.

	� Mechanistic understanding: A physical understanding of the climate system is available 
(i.e. the warming properties of greenhouse gases are well understood and established).

Here is an example that would support the attribution of a change in streamflow to land 
use changes:

	� Counterfactual inconsistency: A recently calibrated hydrologic model is unable to repro-
duce an unusual change in streamflow observed in the historic data under the assump-
tion of stationary parameters. In other words, forcing a static watershed model with 
precipitation and temperature does not reproduce the observed change in streamflow.

	� Factual consistency: Historical records of changes in streamflow are consistent with 
aerial imagery of forest loss (e.g. due to fire or logging activity). The hydrologic model 
that accounts for land-use change in line with historic imagery or logging records, etc. 
does replicate the observed change in streamflow.

	� Mechanistic understanding: A physical understanding of the watershed indicates that 
the removal of surface vegetation increases its mean annual streamflow (i.e. rainfall 
produces more runoff).

This trend may be justifiably included in a model of future conditions, particularly if it aligns 
with a forest management plan that has future planning conditions or rules available.
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Appendix C – GCM selection methods

As explained in Section 2.3 – Sources of uncertainty, the ensemble approach is used to char-
acterize the uncertainty of future emissions scenarios and climate models. As the number of 
models rises quickly and can become challenging on the computational side, GCM selection 
methods, presented in this Appendix, are emerging. The goal of these methods is to select 
a subset of GCMs that adequately represent most of the full ensemble and its uncertainty.

Selection methods for GCM ensembles range from removing a few models with large biases 
(outliers) to using an optimal combination of models; however, all methods require time and 
resources. Therefore, Appendix C is most relevant for those with the time and resources 
needed to conduct more advanced analyses.

It is noted that while this discussion focuses on GCMs, some of its selection concepts also 
apply to RCPs and other models (RCM, hydrologic models).

C.1 Driving needs for selection

The optimal selection of GCMs depends on the needs of the assessment. Some assessments 
require best – and worst-case scenarios. Other assessments may require a smaller range 
of projections and focus on a central tendency. The assessment may also have practical 
constraints, such as limited processing time.

C.2 GCM ensembles – key concepts

The following key concepts underlie the principles of ensemble selection.

	� There are many GCMs. There is an ever-increasing number of climate change models. 
For example, the next CMIP generation is estimated to be 10 times larger than the 
existing generation (Eyring et al., 2016).

	� Some models are outliers. When projecting hydrologic changes, some individual cli-
mate models may stand out from the ensemble (due to overestimation or underesti-
mation biases) and carry a large fraction of the climate projection uncertainty (Gao et 
al., 2019; Her et al., 2019; Hosseinzadehtalaei et al., 2017).

	� Some models are similar. It is common for GCMs within an ensemble to share components 
(Knutti et al., 2013; Sanderson et al., 2015). Similarity among GCMs can result in similar 
future projections and users should be aware of this feature when selecting an ensemble 
that sufficiently represents uncertainty and when interpreting ensemble statistics.
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	� Some GCMs better represent observed climate. Models differ in their ability to repre-
sent the observed climate (IPCC 2013) and hydrologic processes when coupled with 
hydrologic models (Ignazio Giuntoli et al., 2018).

	� GCMs that better represent observed climate will not necessarily perform better in 
the future. Better ability to represent the observed climate does not guarantee the 
validity of future projections (Hosseinzadehtalaei et al., 2017; Klein and Hall, 2015).

	� Accuracy depends on variable, geography and timescale. No model has been shown 
to outperform all others across multiple diagnostics, indices or timescales (Charron, 
2016; Wang et al., 2018; Wilby, 2010). For instance, models that perform well historically 
for temperature (important for snow processes) may be less reliable for precipitation.

	� The coverage of impact model variables differs from that of climate variables. Even 
though a subset of GCMs may cover most of the uncertainty associated with climate 
variables (e.g. precipitation), the same coverage is not guaranteed to extend to hydro-
logic impact variables, because the transfer process from climate to hydrology is com-
plex and non-linear (Chen et al., 2016; Wang et al., 2018).

C.3 Driving need #1: Maximizing uncertainty

In some instances, the practitioner may need to know the best – and worst-case scenarios 
for sensitivity testing, for instance, or to prepare for the most extreme consequences. These 
scenarios can be obtained by maximizing the model diversity (i.e. by obtaining models with 
different characteristics) at each step of the modeling chain (Hosseinzadehtalaei et al., 2017; 
Schaefli, 2015). The selection of a subset of GCMs representing the best – and worst-case 
scenarios should therefore be accomplished as late as possible in the modeling chain.

Selection option

	� Envelope method – One approach to selecting a subset of models is to retain the best – and 
worst-case scenarios, based on the goal of adequately representing the full range of pos-
sible future conditions for the indices of interest (Charron, 2016; Wang et al., 2018).

With this approach, there is greater confidence that the range of models obtained will 
encompass the future trajectory. However, the assessment should not be unrealistically 
confident, as even the inclusion of all available models does not guarantee that all possible 
future hydrologic projections are covered (Wang et al., 2018).
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C.4 Driving need #2: Optimizing uncertainty

The Maximizing uncertainty approach may not always be appropriate for decision-making. 
Consider, for instance, that the approach results in a range of climate projections representing 
drastically different hydrologic impacts (e.g. different directions of change). Decision-makers 
may need a smaller range of results that still capture most of the projection uncertainty. As a 
result, practitioners need a method to optimize their understanding of uncertainty.

Selection options

	� Past performance methods – These methods select a subset of GCMs (or alternatively, 
weigh models differently) based on their ability to represent the observed climate 
(Wang et al., 2018). For example, models may be included or excluded on the basis of 
credibility in medium/low flow representation (Ignazio Giuntoli et al., 2018). The chal-
lenge is that a climate model that generates relatively accurate present-day simulations 
will not necessarily generate accurate long-term projections (Hosseinzadehtalaei et 
al., 2017), although it may be possible to focus on processes that dictate long-term cli-
mate evolution (Klein and Hall, 2015). Some studies have proposed selection methods 
that combine both recent-past performance and climate change envelope coverage 
criteria (Wang et al., 2018).

	� Removing outlier projections – A handful of studies have investigated how uncer-
tainty varies based on individual climate models (Gao et al., 2019; Her et al., 2019; 
Hosseinzadehtalaei et al., 2017). This type of analysis can help identify which models 
most contribute to the uncertainty of an ensemble. These unrealistic (most different) 
models can be removed when trying to reduce uncertainty contained in the subset of 
GCMs (Maraun and Widmann, 2018).
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C.5 Driving need #3: Practical constraints

Another potential reason to select a subset of GCMs is the need to increase efficiency in the 
modeling chain due to practical constraints, such as time and budget. Although it is usually 
advised to use as many (credible) climate models as possible in impact studies, the extraction, 
storage and computational costs associated with large ensembles may be prohibitive (Chen 
et al., 2016; Wang et al., 2018). In practice, it is not uncommon for impact studies to rely on a 
subset of climate models due to feasibility (Charron, 2016; Wang et al., 2018). The selection 
purpose in this case is to have a smaller number of models.

Whenever possible, this selection should be based on climate indices that represent the pri-
mary drivers of the impact model (hydrology, energy production, and/or asset value), rather 
than on indices such as mean annual precipitation or temperature (Chen et al., 2017; Seo et 
al., 2019). In the case of high flows, for example, such an index could be the maximum 72h 
precipitation. Finding these representative indices could require extensive analyses of past 
data, but maximizes the possibility of having an adequate climate model ensemble.

Selection options:

	� Any of the methods previously described (envelope, past performance, remov-
ing outliers)

	� Grouping/clustering methods – Another approach to selecting a subset of GCMs is to 
minimize repetition among similar models by grouping them and taking a represen-
tative model from each group. This is done by calculating the differences between all 
models with respect to the variables of interest (Casajus et al., 2016; Sanderson et al., 
2015; Wang et al., 2018)
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Appendix D – Transferability 
of data and results

Practitioners may need to transfer information from one situation to another, or one project to 
another. Because climate change impact assessments are performed as a modeling chain, there 
may be transferability of information at different steps of the chain, i.e. transferability of climatic 
information (e.g. climate data, climate projections) and hydrologic information (e.g. present-day 
flows, future hydrology projections). For example, practitioners may need to know whether the 
findings of studies conducted on another geographic area can be applied to their watershed 
(transferability between watersheds). Alternatively, practitioners may rely on outputs from global 
impact models, and ask themselves whether results can be transferred from the scale of the 
impact model (transferability between spatial resolutions). Lastly, practitioners conducting their 
own analyses may need to know whether a model calibrated during wet years performs correctly 
during years of drought (transferability between time periods).

Ultimately, practitioners need to use the best available information and to critically com-
pare how different data or findings may or may not be transferable to a particular water-
shed. Practitioners must recognize the potential limitations of transferring information. 
Appendix D explores the relevant factors to consider.

D.1 Transferability between watersheds

D.1.1 What is the challenge?

Practitioners may need or may want to transfer information from one watershed to another. 
Although many climate change impact studies are based on watershed-scale projections 
(Schaefli, 2015), these studies may not be relevant to the study of another region. The short-
age of reliable hydrologic data is a worldwide issue due to the costs and logistics associ-
ated with monitoring networks. Therefore, most watersheds in all climatic regions remain 
ungauged (Maréchal and Holman, 2004). Even in gauged watersheds, it is necessary to make 
forecasts not only at the watershed outlet but also at certain places within the watershed 
(Hunukumbura et al., 2012).

However, transferring climactic or hydrologic findings/projections from one area to another 
is a challenge because models have parameters that are calibrated based on unique climatic 
and physiographic factors (Schaefli, 2015). Even within small regions, the interdependence 
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of climate, hydrology and hydropower production may vary strongly (Schaefli, 2015; Wilby, 
2010). For example, the relationship between temperature increase and hydrologic cycle 
can differ significantly from one region to another (Hattermann et al., 2018; Schaefli, 2015). 
In some regions, increases in temperature and radiation may stimulate evapotranspiration 
and reduce water availability, while in other regions these may stimulate precipitation rather 
than evapotranspiration and increase water availability (Hattermann et al., 2018). Opposing 
trends can develop even within a single watershed (Hattermann et al., 2018). Even after 
calibrating a hydrologic model at a watershed outlet, the model parameters may not be 
transferable to internal ungauged sub-watersheds (Hunukumbura et al., 2012).

D.1.2 Factors to consider

Before transferring information from one watershed to another, it is important to consider 
the similarity of the watersheds’ climactic and hydrologic processes. The factors below can 
be used as a guide (Kour et al., 2016, Schaefli 2015, Hattermann et al., 2018, Hunukumbura 
et al., 2012), as well a consideration of the degree of flexibility of the method/model.

How similar is the physiography and climate?

	� Latitude and spatial proximity

	� Altitude and topography

	� Proximity to water bodies

	� Climate seasonality

	� Precipitation type (e.g. snow)

How similar are watershed characteristics and processes?

	� Watershed size

	� Topography (e.g. slope)

	� Geology

	� Land use/urbanization

	� Ecozone/vegetation

	� Natural and artificial water storage

	� Role of groundwater

	� Seasonal water-balance behaviour

	� Presence of glaciers or snowpack

	� Watershed heterogeneity
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TRADING SPACE FOR TIME IN CLIMATE CHANGE IMPACT STUDIES

A parallel can be made between the transfer of time parameters and the transfer of space parameters 

(Coron et al., 2012). This is increasing popular for assessing the hydrologic implications of anthropo-

genic climate change (Patil and Stieglitz, 2015). For example, Singh et al., (2011) evaluated the ability 

to extrapolate parameters (for climate change) by transferring them to other catchments in warmer 

climatic zones (Coron et al., 2012). Merz et al., (2011) found that variations of parameters over time and 

space were comparable. Patil and Stieglitz (2015) suggests that further exploration is therefore needed 

on how to compare spatial and temporal parameter-transfer approaches.

D.2 Transferability between spatial resolutions

D.2.1 What is the challenge?

Practitioners need to transfer information from one spatial resolution to another. Climate 
change impact assessments are often implemented in regional contexts, while most hydro-
logic analyses consider larger spatial extents. (Her et al., 2019).

However, transferring climactic or hydrologic findings/projections from one spatial resolution 
to another is a challenge because large-scale analyses do not consider detailed processes, 
and localized impacts may not be efficiently represented (Her et al., 2019). The original intent 
of GCMs was to assess global change; it is only more recently that they have been used to 
inform adaptation measures at regional and local scales (Wilby, 2010).

For example, hillslope processes (e.g. infiltration, overland flow) are more dominant in small 
watersheds, while channel routing and groundwater flow may control the overall hydrology 
of large watersheds (Her et al., 2019). In addition, homogeneity can be reasonably assumed 
for a hillslope, whereas a large watershed usually has considerable heterogeneity (Her et al., 
2019). The hydrologic responses from areas of large watersheds are likely to be mixed and 
dampened through prolonged overland and channel processes (Her et al., 2019).
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D.2.2 Factors to consider

Before transferring information from one spatial scale to another, it is important to consider 
differences in climactic and hydrologic processes. The factors below can be used as exam-
ples (Her et al., 2019; Wilby, 2010).

	� What are the dominant processes?

	� Dominant hydrologic processes (e.g. hillslope vs. channel routing)

	� How scale compares to that of atmospheric processes (e.g. thunderstorms)

	� Watershed homogeneity

	� Time of response (e.g. influence of groundwater)

It is noted that there exist some empirical transfer functions (by assuming scale-independent 
distribution functions with regionalized distribution parameters) to transfer global parameters to 
regional scales; however, these have yielded mixed results (Samaniego et al., 2010, 2017).

D.3 Transferability between time periods

D.3.1 What is the challenge?

Practitioners may need to transfer information from one time period to another. This 
is a critical issue in the context of climate change impact studies, because climate and 
hydrologic models are developed for observed conditions and then applied to future 
conditions (Coron et al., 2012; Schaefli, 2015). Fluctuations in historical climate can also 
be an issue if flows are simulated for a period that is different than the one used in 
the calibration (Coron et al., 2012). Other situations where the model is calibrated in 
one period and then extrapolated to another include forecasting, design and reservoir 
management (Coron et al., 2012; Maréchal and Holman, 2004).

However, transferring climactic or hydrologic findings/projections from one time period 
to another is a challenge because optimal model parameters vary with time. As reported 
by Coron et al., (2012), many authors have observed decreases in model performance (i.e. 
larger model errors) after transferring parameter sets between climatically contrasted 
periods. For example, parameter values can vary seasonally because of differences in 
dominant hydrologic processes controlling runoff generation in different seasons (Coron 
et al., 2012). Hence, calibration over a wetter (drier) climate than the validation climate 
leads to an overestimation (underestimation) of the mean simulated runoff (Coron et 
al., 2012; Motavita et al., 2019). The risk of poorly transferring information across time 
periods is that the results may inspire overconfidence (Motavita et al., 2019).
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Parameter dependency on climate has been investigated using the differential split-sample 
test (SST), where calibration and validation periods are chosen according to their climatic dif-
ferences (Coron et al., 2012). Coron et al., (2012) reports a lack of consensus in the literature 
on the success of parameter transfer between different time periods, and postulates that 
the results vary from watershed to watershed.

D.3.2 Factors to consider

Before transferring information from one time period to another, it is important to consider 
the similarity between the two periods. The factors below can be used as a guide (Coron et 
al., 2012; Motavita et al., 2019).

How was the model calibrated?

	� Length of record

	� Availability and quality of data (e.g. missing data)

	� Diversity of climactic and hydrologic conditions

How similar are the two periods?

	� Climatic conditions

	� Dominant hydrologic processes (e.g. seasonal modification of groundwater balance)

	� Watershed characteristics (e.g. seasonal modification of vegetation)
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D.4 Transferability between time resolutions

Hydrologists have widely studied the time dependence of hydrologic models (Jie et al., 2018; 
Reynolds et al., 2017). The temporal resolution of observed data has been found to be a 
critical element in determining the parameters, prediction performance and applicability of 
hydrologic models (Jie et al., 2018). In many areas, hydrologic observation data are available 
only for longer time periods (e.g. daily), whereas model applications may require finer tem-
poral resolutions (e.g. 6-hour; Jie et al., 2018). Practitioners are advised to search for climatic 
and hydrologic information that is of similar temporal resolution to their application.
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Appendix E – Validation 
of climate products

This appendix provides the practitioner with a comprehensive approach to evaluating the 
adequacy of climate products (weather station data, observed gridded products, reanalysis, 
climatic simulations and climate scenarios) and to determining whether a climate product 
suits the valuation modelling chain.

Section E.1 presents general concepts and specific examples of the approach, 
Section E.2 considers relevant limitations, Section E.3 examines the approach more closely 
and Section E.4 considers several examples.

E.1 General concepts

The approach is based on the idea that for a climate product to be adequate for hydro-
logic modeling, it must meet certain requirements when it is compared to a given baseline 
or reference. The approach should be applied to any climate product prior to its use in a 
hydrologic model. Indeed, hydrologic models for the modeling chain need to be calibrated 
on observed streamflow and therefore need a good quality input to produce an acceptable 
output. Furthermore, understanding the strengths and limitations of the climate product will 
help with the interpretation of the hydrologic simulation results (Krysanova et al., 2018). The 
procedure is typically referred to as an evaluation diagnostic (Maraun and Widmann, 2018).

Maraun and Widmann (2018) describe the regional climate by analyzing marginal, temporal, 
spatial and multivariate aspects, as well as seasonal and spatial variations. In this regard, the 
approach relies on a multitude of indices to characterize the complexity of the climate. To eval-
uate its performance, the climate product is compared to a fixed baseline with regard to the 
climate indices. Variables used as input to a hydrologic model – typically minimum and maximum 
temperatures as well as precipitation – thus need to be validated with the approach.

This comprehensive approach is well suited to business decisions that necessitate a lot of 
attention to detail. Based on the practitioner’s expertise, parts of the approach may also be 
used to inform other business decisions.
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Specific uses of the approach include the evaluation and comparison of the performance of:

1)	 Gridded observations and reanalysis datasets versus observations

2)	 Multiple post-processed climate model simulations

3)	 Multiple weather generators

This approach should not be used to evaluate and compare the performance of raw climatic 
simulations. Refer to Maraun and Widmann (2018) for such an exercise.

E.2 Limitations

Limitations of the suggested validation are listed below.

	� Validation of climate products might not be sufficient to evaluate suitability for the 
valuation modeling chain. The hydrologic validation of Appendix  G – Validation of 
hydrologic simulations might also be necessary (see example in Chen et al., (2019)).

	� The threshold for the adoption/rejection of a climate product is left to the practi-
tioner’s judgement. See Maraun and Widmann (2018) for further information on the 
relevance of significance tests.

	� The approach is restricted to a climatic validation, or more specifically to climate prod-
ucts expected to climatologically represent the climatic baseline and not day-to-day 
behavior (see the Glossary for more information on day-to-day behaviour).

	� The approach is limited by the availability of a climatic baseline for the region of interest.

	� The approach is also limited by the quality and the reliability of the climatic baseline. 
As discussed in Section 4.1 – Climatic baseline, the baseline is most surely subject to 
certain errors and sources of uncertainty.

	� For specific use 1) Gridded observations and reanalysis datasets versus observations, 
the approach is limited by the existence of independent weather stations (i.e. some 
that were not used to produce the gridded observations or the reanalysis).
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E.3 Methods

E.3.1 Defining baseline, spatial scale and period

The first step is to identify a proper baseline for the validation. The proper baseline for specific 
uses 2) Multiple post-processed climate model simulations and 3) Multiple weather generator, is 
the baseline identified in Section 4.1 – Climatic baseline. A proper baseline for specific use 1) is 
independent weather stations (i.e. weather stations not used to produce the gridded observa-
tions or the reanalysis). However, independent weather stations do not always exist or are not 
always available and therefore, validation of the climate product cannot be carried out.

The practitioner also needs to decide on spatial scale: at the weather stations, grid points or 
watershed. This decision can depend on whether the hydrologic model is lumped or distrib-
uted and may be constrained by data availability.

The same time period (concomitant years) in the baseline and the climate product should be 
used while carrying out the validation to avoid inconsistencies due to low natural variability 
cycles and to climate change signal.

E.3.2 Validating the climate products

As mentioned in Section E.1, the validation compares the characteristics (indices, indicators) 
of certain variables obtained from a climate product to those obtained from a reference 
dataset (i.e. the baseline). These characteristics rely on key statistical properties of the vari-
ables of interest, and the aim is to verify that the climate product reproduces adequately 
the statistics of the baseline dataset for the indices deemed important by the practitioner. 
General statistics, such as annual averages and inter-annual variability about these averages, 
need to be checked to ensure that the general behavior of the variables of a climate product 
is similar to that of the baseline. Other general indices are the average yearly profiles (or 
cycles) of variables at a given temporal scale (daily, weekly, monthly, etc.) of interest; for 
example the time scale of the hydrologic model used is of particular interest. Furthermore, 
the variability of the cycles throughout the years of the studied period is also important to 
analyze. Section E.3.3 lists more specific indices for hydrologic modelling.

To validate the climate product, follow the three steps outlined below: general validation; 
validation of all indices considered; and in-depth analysis. If the simulated dataset does not 
perform adequately for a given climate index, it indicates a limitation of the dataset and the 
dataset should not be used to predict the future of this climate property.
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1.	 General validation

General validation applies to all climate variables of interest, usually minimum and maxi-
mum temperatures, and precipitation for hydrologic modelling. For a given variable X, Xobs 
represents the baseline values and Xsim represents the climate product values. For general 
validation, Table E1 presents the main quantities of interest.

Table E1 Quantities of interest denomination and examples for the general validation

Quantities of interest Denomination Example for a 30-year baseline
Annual averages (AA) AA-Xobs, 

AA-Xsim
Annual average of the 30 years (30 values)  
of Xobs & Xsim

Averages over the years for a specified temporal  
scale (T) – usually a day, week or month (TA)

TA-Xobs, 
TA-Xsim

T=month; monthly averages of the 360 months 
(30 years x 12 months = 360 values) of Xobs and Xsim

Min. and max. of Xobs and Xsim  
(Tmin and Tmax) with time step T

TMin-Xobs, 
TMin-Xsim, 
TMax-Xobs, 
TMax-Xsim

T= month; minimum and maximum of Xobs 
and Xsim during a month, for every 360 months 
(30 years x 12 months = 360 values)

1.1.	� Compare mean of annual averages AA-Xobs and AA-Xsim for the presence of bias.

1.2.	� Compare standard deviation of AA-Xobs and standard deviation AA-Xsim for the 
presence of bias in inter-annual variability.

1.3.	� Plot time series

	� Plot Xobs & Xsim as a function of time.

	� Are there any problems with the data?

1.4.	� Plot annual time series

	� Plot AA-Xobs and AA-Xsim as a function of time. See Figure E1 for an example.

	� For specific use (1):

	� Are there trends in AA-Xobs and AA-Xsim? If so, do they correspond to one other?

	� If there is a trend in either AA-Xobs or AA-Xsim, its possible causes need to be studied. 
See Appendix B – Detection and attribution in the context of climate change.

	� If the trends in AA-Xobs and AA-Xsim do not correspond to one other and the 
difference cannot be explained by their causes, further investigation is needed.

	� For specific use (2):

	� Are there trends in AA-Xobs? What are their causes?

	� Because of natural variability, trends in AA-Xsim must be evaluated using the 
ensemble approach (Maraun and Widmann, 2018).
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	� For specific use (3):

	� Are there trends in AA-Xobs? What are their causes?

	� If only one generated dataset is available, trends in AA-Xsim can be studied as with 
specific use (1). If several generated datasets are available, an ensemble approach 
(specific case (2)) may be used. The ensemble approach will minimize the effects of 
stochastic variability for trend analysis.

1.5.	 Plot annual cycles (mean-climatology).

	� Plot mean, minima and maxima of TA-Xobs & TA-Xsim throughout T  
(see Figure E2 for an example with T = one month).

	� Is the cycle well represented by the simulation?

	� Is the variability of the cycle well represented?

1.6.	 Plot annual cycles (min and max).

	� Plot TMin-Xobs & TMin-Xsim throughout T (similar to graphic at point 1.5).

	� Plot TMax-Xobs & TMax-Xsim throughout T (similar to graphic at point 1.5).

	� Is the variability of the cycle well represented?

1.7.	 Plot spatial patterns of daily values.

	� Plot maps of daily values for the region of interest. If working with gridded datasets, it is 
worth doing these graphs before aggregation at the weather station or watershed scale.

	� Plot maps of min-Xobs and max-Xobs, and min-Xsim and max-Xsim. Plot maps of Xobs 
and Xsim for any other day.

	� Are there any spatial patterns that do not look like weather patterns? See Figure E3.

1.8.	 Plot annual average over time.
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2.	 Validation of simulations for all climate indices of interest

In this step, all indices judged relevant by the practitioner are studied. Section E.3.3 gives a 
list of climate indices useful for hydrologic modelling.

The analyses of step 2, although conducted in a fashion similar to those in step 1, go further by 
looking at more detailed climate properties as measured by a larger scope of climate indices.

The following is an example for proportion of wet days at the monthly time step (T=M) that 
should be replicated for all relevant indices.

Table E2 Quantities of interest denomination and examples for the validation of simulations for all climate indices 
of interest

Quantities of interest Denomination Example for a 30-years baseline
Proportion of wet days over the months MwetD-Xobs, 

MwetD-Xsim
T=month, proportion of wet days for the 360 months 
(30 years x 12 months = 360 values) of Xobs & Xsim

2.1.	� Compare mean of annual averages MwetD-Xobs and MwetD-Xsim for the presence of bias.

2.2.	� Compare standard deviation of MwetD-Xobs and standard deviation MwetD-Xsim for 
the presence of bias in inter-annual variability.

2.3.	� Plot annual time series.

	� Plot MwetD-Xobs & MwetD-Xsim throughout the years of the period 
(12 months=12 graphics).

2.4.	� Plot annual cycle.

	� Plot mean, minimum and maximum of MwetD-Xobs & MwetD-Xsim throughout T.

2.5.	� Plot any other types of relevant graphic for the quantities.

The results can be plotted on a graph and/or compiled using heatmaps (see Figure E4) and 
performance metrics such as the mean squared skill score, the reduction of variance skill 
score or the Kuiper goodness-of-fit metric (Diaconescu et al., 2018).

If the simulated dataset does not perform adequately for a climate index, it indicates a lim-
itation of the dataset. It should be used with caution if the climate index is of particular 
importance in the modeling chain.
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3. Carry out in-depth analysis for specific uses 2) and 3).

This step takes into consideration structural elements of the climate models used to obtain 
the climate products. Maraun and Widmann (2018) suggest and explain several in-depth 
analyses related to topics such as the added value of RCMs.

E.3.3 Defining climate indices

Maraun and Widmann (2018) specify that: “indices need to be user specific and well selected 
to derive relevant information for a given context” and provide few starting points to build a 
list. In the context of the valuation of assets, this list can change according to type of asset 
(reservoir/runoff-river), watershed size, type of hydrologic model, types of revenues (energy, 
power and ancillary services), etc.

The list below presents climate indices that are of interest generally for hydrologic modelling 
(Fournier et al., 2015; Fournier and Merleau, 2016) as another starting point. Practitioners can 
also use the climatic baseline and sensitivity analysis presented in Appendix H – Sensitivity 
Analysis to identify their own indices or to prioritize the ones from the list below.

Precipitation

	� Precipitation intensity: daily, monthly, seasonally and annually. For monthly, seasonal 
and annual processing, averages and accumulations are relevant. For seasonal and 
annual quantities, average over years.

	� Proportion of dry and wet days: daily, monthly, seasonally and annually. For seasonal 
and annual quantities, proportion over years.

	� Sequence of dry and wet days per month, season and year. For seasonal and annual 
quantities, proportion over years.

	� Annual profiles at the daily time step of transition probabilities between dry (d) and 
wet (w) days, with different lags.

	� One-day lag: d | d; d | w; w | d; w | w (for example, d | w: dry day given the previous 
day is wet)

	� Two-day lag: d | d, d; d | d, w; etc.

	� Three-day lag: d | d, d, d; d | d, d, w; etc.

Temperatures

	� Minimum temperature (Tmin) and maximum temperature (Tmax) as well as the aver-
age of Tmin and Tmax (Tmean) and daily thermal amplitude (DTA = Tmax-Tmin).
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	� Without conditioning on the presence of precipitation

	� Distributions (e.g. boxplot): monthly, seasonal and annual

	� Daily profiles for average and standard deviation

	� Average and standard deviation over time: seasonal and annual

	� Conditioning on the presence of precipitation (d or w)

	� Distributions (e.g. boxplot): monthly, seasonal and annual

	� Daily profiles for average and standard deviation

	� Average and standard deviation over time: seasonal and annual

	� According to Tmin

	� Number of freezing days: Monthly, seasonal and annual over years

	� Number of cold waves (spells) over years

	� According to Tmax

	� Number of heat waves over years

Temporal dependencies of the variables and between variables at the daily time step

Correlations are used to study the different dependencies, once the data at a given time step have 
been standardized (centered and scaled) according to the two following conditioning approaches.

	� Without conditioning on the presence of precipitation

	� Temporal:

	� Corr [ X(t-h), X(t) ] for X = Tmin, Tmax, Tmean & DTA; h = 1, 2, …

	� Between variables:

	� Corr [ X(t), Y(t) ] for X = Tmin, Y = Tmax and X = Tmean, Y = DTA

	� Conditioning on the presence of precipitation (d or w), with daily standardized variables

	� Temporal:

	� Corr [ X(t-h), X(t) ] for X = Tmin, Tmax, Tmean & DTA; h = 1, 2, …

	� Between variables:

	� Corr [ X(t), Y(t) ] for X = Tmin, Y = Tmax and X = Tmean, Y = DTA

	� For wet days only, corr [ X(t), Y(t) ] for X = Tmin, Tmax, Tmean and DTA; 
and Y = Precipitation intensity (P) and log(P).

Dependence of variables on different watersheds

Correlation of variables as in the previous section between different watersheds/grid points
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E.4 Examples

Figure E1 Example of annual profile for AA-Xobs and AA-Xsim as a function of time. AA-Xsim was computed on a 
post-processed climate simulation. The red line (raw) represents AA-Xsim computed on the raw climate simulation.

Figure E2 Example of annual profile for mean (climatology) TA-Xobs and for mean TA-Xsim. TA-Xsim was computed on 
a post-processed climate simulation. The red line (raw) represents TA-Xsim computed on the raw climate simulation. 
Dotted lines represent the min and max.
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Figure E3 Example of daily precipitation map showing patterns not corresponding to typical weather patterns. 
The data come from a post-processed GCM simulation. Note that not all post-processing techniques provide 
similar results.

Figure E4 Example of heatmap for several climate indices (left) and several GCMs and RCMs simulations (bottom). 
Colour and hue illustrate performance. Each square represents the performance for several sub-watersheds. 
Blue is for an underestimation of the median performance, red for an overestimation and yellow for an accurate 
estimation. The darker hue means that less of 25% of the simulations agree with the observation, while the lighter 
hue means that more than 75% of the simulations agree with the observation. Agreement is determined by the 
overlap of quantiles between the observations and the simulations (Fournier and Merleau, 2016).
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Appendix F – Selection and 
calibration of a hydrologic model

This Appendix aims to review the considerations needed to properly choose and calibrate 
a hydrologic model for a climate change study. Aspects to consider include: the hydrologic 
model itself (lumped versus distributed, conceptual versus physical); the number of param-
eters and their interaction; the chosen calibration period; and the quantity and quality of 
input data. The methodology to be used to choose the optimal parameters can vary widely 
depending on available data, the complexity of the hydrologic model and the tools available 
to optimize the parameters. This Appendix outlines the factors to consider and offers gen-
eral guidelines for good practices to increase the robustness of hydrologic projections.

F.1 Hydrologic model selection

F.1.1 Prior considerations

Factors to consider when choosing an appropriate hydrologic model include the 
scope of the study, the type of results sought (relative comparison versus absolute 
values, extreme flow study (high versus low), seasonal or annual mean volume, etc.) 
and how the results will be used.

F.1.2 Types of hydrologic model and their limitations

A well-calibrated simple lumped model can successfully represent some hydrologic indices, 
such as annual or seasonal volumes. In some cases, however, a more complex distributed 
model may be more relevant. If a simulated river’s streamflow is required, for example, or if 
the study involves a change in land use between the reference and future periods, a more 
complex distributed and physical model may be more appropriate. However, there is a 
trade-off between the more process-based approach versus a calibration-based approach. 
The larger number of inputs generally required for these models may not be available or may 
need to be estimated; these models are also more difficult to set up, and are typically more 
highly parameterized and harder to calibrate.
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The choice of model must also be informed by the target watershed’s dominant hydrologic 
processes. For example, a snowmelt-dominated watershed will require a snow accumulation 
and melt module that can adequately simulate the complexity of the dominant hydrologic 
process (Magand, 2014).

Another factor to consider is increase or decrease in the frequency of certain hydrologic 
events that have been little observed in the past. For instance, a model (or its parameters) 
may not be trained to reproduce warmth or rain-on-snow episodes if these are infrequent 
in the observed history.

It has also been shown that empirical equations used outside the conditions for which they 
have been established (e.g. future climate) can sometimes overestimate the value of the 
different components of the hydrologic cycle, such as evapotranspiration (Hajji et al., 2018; 
Ludwig et al., 2009). For this reason, it is important to use diverse calibration and validation 
periods, each with a range of wet to dry years to produce a more robust parameter set. It 
may also be important to consider a model’s approaches for simulating various processes, 
for example, the use of potential evapotranspiration in modeling evaporation (Savenije, 
2004). Ideally, choosing a model that has already been shown to correctly reproduce flow 
rates in changing climate is recommended (Broderick et al., 2016).

F.2 Calibration of hydrologic model parameters

Calibration is the process of estimating model parameter values to enable a hydrologic model 
to match observations such as runoff or streamflow (Kumarasamy and Belmont, 2018).

The process is usually carried out automatically using an optimization algorithm where the value 
of one (or more) objective function is to be minimized between the simulated and observed flows. 
Traditionally, the optimal parameters chosen are those that minimize the value of the objective 
function. In climate change hydrologic-impacts studies, the parameters are used in extrapolation 
mode and are assumed to adequately model the flows resulting from climatic scenarios. Thus, 
to ensure robustness in hydrologic projections, factors other than the value of the objective 
function must be taken into account when choosing the parameters.

Other methodologies, such as those oriented towards the reproduction of hydrologic pro-
cesses, are also available to help inform the optimization process. The following section 
presents different ways to use valuable information in the calibration process, as well as 
various avenues to avoid choosing optimal parameters solely on the basis of optimization 
performance. The many challenges of parameters selection are also discussed here.
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F.2.1 Optimization methods

To adequately address calibration issues for climate change impact studies, many solutions 
have been proposed in recent decades. Improvements in calibration procedures for hydro-
logic models can be separated into two closely interconnected categories: modifying opti-
mization techniques and relying on complementary data for calibration. The first category, 
presented in Section F.2.1.1, includes techniques such as multi-objective calibration and the 
use of constraints. The second, presented in Section F.2.1.2, involves the use of measured 
or complementary data (evapotranspiration, snow water equivalent and soil moisture con-
tent) in the calibration procedure.

Considering interactions between parameters

Independently from their nature, all models use several equations and are, at some point, 
conceptual (Coron et al., 2011). Furthermore, since all parameters cannot be measured, 
calibration is an inevitable step when conducting a hydrologic study. Equifinality and inter-
dependencies among parameters are well-known facts in hydrology (e.g. Kumarasamy and 
Belmont, 2018). Challenges such as dependency of model parameters on the climate of the 
calibration period and the low identifiability of parameter values (Coron et al., 2011) must 
also be considered. The correlation between parameter and climate indices have been stud-
ied and it has been shown that some parameters correlate much more closely with climate 
indices than other parameters. Merz et al., (2011), for example, showed that snow and soil 
parameters correlated particularly strongly with changing climate conditions. When a hydro-
logic model is used to perform climate change hydrologic projections, particular attention 
must be paid to calibration steps and parameter selection.

	� Hierarchical selection of parameters during calibration can be used as a way to better 
understand the identifiability of the parameters (Kumarasamy and Belmont, 2018) 
and/or to better reproduce extreme (high and low) flows (Onyutha, 2019).

	� Time-variable parameters can be considered as a way to improve the transferability 
of the parameter set, especially when using simple models with few parameters (Zeng 
et al., 2019).

Input data and other valuable information in the calibration process

Streamflow, temperature and precipitation observations are the minimum observed input 
data typically used to calibrate a hydrologic model. While it may seem obvious to utilize only 
the best available data prior to adjusting parameters to achieve desired performance metrics 
(Kumarasamy and Belmont, 2018), practitioners should also consider all available relevant 
information in the calibration process. If observed data (other than runoff or streamflow) are 
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available for any of the hydrologic processes simulated by the model (e.g. snow measure-
ments validating the snow accumulation and melting module, snow water equivalent, aver-
age evapotranspiration measurements from field instruments or satellite data, soil humidity 
data, etc.), these data, assuming quality control, can be used to validate the identifiability of 
the parameters of the model’s hydrologic processes. Such types of information can also be 
used to restrain the model by imposing constraints during the optimization procedure (M 
Minville et al., 2014) and thus improve the model’s robustness.

Several ways of incorporating additional data during optimization have been success-
fully explored.

	� Gupta et al., (1999) showed that a multi-criteria calibration approach can be effective in 
constraining parameter estimates to physically plausible ranges, when observations on 
at least one appropriate heat flux and one properly selected state variable are available.

	� Yapo et al., (1998) stated that exploiting useful information about the physical system 
contained in measured data time series can be employed for efficient multi-objective 
calibration procedures.

	� Yadav et al., (2007) proposed a method that provides behavioural parameter sets for 
prediction of streamflows at ungauged basins. The method constrains the parameter 
space using hydrologic indices, with the constraints obtained by performing a region-
alization of discharge characteristics.

	� Zhang et al., (2008) also identified behavioural parameter ensembles using hydrologic 
indices in a multi-objective optimization framework.

	� Bergstrm et al., (2002), and Cao et al., (2006) found that model results with measure-
ments other than streamflow can lead to increased confidence in the physical rele-
vance of hydrologic models.

	� Immerzeel and Droogers (2008) put forward a calibration method for a conceptual 
and distributed hydrologic model where modelling monthly actual evapotranspiration 
(AET) is constrained by satellite data. They showed that in the best performing opti-
mization, the R2 values between monthly sub-basins simulated and measured AET 
increase considerably.

	� Khadam and Kaluarachchi (2004) indicated that relying on soft information, in their 
case the coefficient of efficiency of groundwater table records, can improve hydrologic 
model calibration.

	� Fleming and Neary (2004) and Bennett and Peters (2004) suggested constraining 
parameter search space based on physically-based data. Their methodology uses soil, 
land and other geographic information system-based data for estimating values/ranges 
of HEC-HMS parameters. This helps limit the search space and improves efficiency.
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F.2.2 Parameters selection challenges

Selecting optimal parameters set

When several sets of optimal parameters are available, it may be the case that only one 
(or a few) are used to carry out hydrologic impact studies. This section examines various 
approaches to selecting from several optimal sets.

	� While it may be useful to use standard hydrologic metrics (Nash-Sutcliffe model effi-
ciency (NSE) coefficient, Root Mean Square Error (RMSE)), hydrologic indices should 
also be used to help characterize the hydrograph and to refine the goal of the project 
(Olden and Poff, 2003). It is also important to keep in mind that the hydrologic indices 
identified as the most important for the study might be best reproduced by a set of 
parameters that are not considered optimal with respect to the standards metrics. 
Visual inspection by a trained hydrologist can help to identify parameter sets most 
appropriate to the type of study.

	� Using regionalized parameters or regionalizing physical variables of the basin (Yang 
et al., 2019) reduce spatial discontinuities in the parameter field (as opposed to a 
strict basin-by-basin approach) and may help reproduce patterns which will better 
correspond with climate characteristics, such as aridity (PET/P) and runoff ratio (Q/P). 
Such a more physical approach can give more confidence in the robustness and 
transposability of the model.

	� Averaging multiple model simulations often improves hydrological model performance 
(e.g. Arsenault, Essou, and Brissette, 2017; Arsenault, Gatien, Renaud, Brissette, and 
Martel, 2015; Seiller, Anctil, and Perrin, 2012), in terms of both multiple hydrologi-
cal models and of simulations from multiple optimal parameters sets for a model. A 
variety of approaches for averaging ensembles or subsets of model simulations are 
available from literature.

	� Although calibration is possible over the entire data period (Arsenault et al., 2018), a 
split-sample approach is often taken where the model is calibrated to one period and 
validated to another period. A Differential Split-Sample Approach (DSS, see below), 
where contrasted cycles are deliberately chosen within the observation dataset, is one 
approach to evaluate the robustness of a model and its potential to be transposed to 
a period with different climatic conditions.
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More details about the DSS can be found in KlemeŠ (1986) and Refsgaard et al., (2014). 
These studies recommend DSS to ensure that the hydrologic model can properly simulate 
the hydrologic processes of interest under different climates. KlemeŠ (1986) describes it 
as follows:

“Two periods with different values of the climate parameters of interest should be identified 
in the historic record, e.g. one with high average precipitation, the other with low. If the model 
is intended to simulate streamflow for a wet climatic scenario then it should be calibrated 
on a dry segment of the historic record and validated on a wet segment. If it is intended to 
simulate flows for a dry climate scenario, the opposite should be done. In general, the model 
should demonstrate its ability to perform under the transition required: from drier to wetter 
conditions or the opposite.”

Remembering the transposability aspect of hydrologic parameters

Hydrologic models are often criticized for being inadequate when used in extrapolation 
mode (Thirel et al., 2015). The transposability issue can even be more severe for climate 
change impact studies. In this context, the calibration and selection of hydrologic model 
parameters is of primary importance when integrating climate change data into the value 
modelling chain. For example, the findings of Her et al., (2019) suggest that the selection 
of both climate scenarios and hydrologic model parameters should be made carefully to 
improve the robustness of a hydrologic assessment of climate change.

Different sets of calibrated model parameters can yield divergent hydrologic simulations, 
which in turn can lead to different operational decisions and scientific conclusions. To obtain 
reliable hydrologic results, proper calibration is therefore fundamental (M Minville et al., 
2014). Indeed, even if calibration of observed records provides reliable estimates of model 
parameters for current conditions, there is always the possibility that parameters estimated 
are not indicative of watershed behaviour in a different climate (Singh et al., 2011).

F.3 Calibration of an ungauged watershed

The calibration of a hydrologic model for an ungauged watershed is an additional challenge. 
The practitioner is referred to Winsemius et al, (2009), Wagener and Montanari (2011) 
Hrachowitz et al., (2013) for this subject as it is beyond the scope of this document.
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Appendix G – Validation 
of hydrologic simulations

This appendix provides the practitioner with a comprehensive approach to evaluating the 
adequacy of hydrologic simulations and their robustness when projecting the impacts of 
climate change. The approach will help determine the suitability of the hydrologic simulation 
for the valuation modeling chain. Section G.1 presents general concepts of the approach, 
Section G.2 describes its limitations and Section G.3 provides more in-depth information.

G.1 General concepts

The approach is based on the idea that for a simulation to adequately evaluate an asset’s 
value, it must meet certain requirements when compared to the baseline. This approach 
is considered most reliable at the watershed scale and superior to the approach of using 
ensembles of simulations disregarding their performance (Krysanova et al., 2018).

The approach supports the vision that: “ […] it is the model’s performance at the location 
of interest in the period with observations that is important, and not whether or not the 
model was calibrated and validated to that location. Sometimes a non-calibrated model 
may perform well enough, and the calibration may lead to problems related to over-tuning 
(Krysanova et al., 2018).” This vision can also be extended to say that the approach suits eval-
uations of hydrologic simulations coming from all types of hydrologic models, and both the 
streamflow and runoff variable of gridded hydrologic model. See Section 5.5 – Hydrologic 
simulations for more information about the proper use of the runoff variable.
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During the process, hydrologic simulations are compared with the hydrologic baseline over 
the time period of the hydrologic baseline (Section 4.2) and must meet minimum perfor-
mance and robustness standards. The comparison needs to be made with several hydrologic 
indices to illustrate the numerous properties of hydrologic time series to which hydroelec-
tricity production is sensible. The approach suggested is highly based on Krysanova et al., 
(2018).

This approach should be applied to any hydrologic simulation to better understand the 
strengths and limitations of the time series. It is also suggested for hydrologic simulations 
produced by the practitioner, as most of the time, the objective function for model calibra-
tion will only evaluate the hydrologic time series under a limited scope.

The comprehensive approach suggested is well suited for business decisions that neces-
sitate much attention to details. The approach can also be carried out partially for other 
business decisions according to the practitioner’s expertise.

The approach can be used specifically to:

1)	 Evaluate the performance of a hydrologic model to represent past hydrology

2)	 Evaluate the performance of a hydrologic model to represent hydrology on climatic scales 
(e.g. 30 years)

3)	Evaluate the performance of various weather datasets (weather stations, gridded 
observations and reanalysis) in the hydrology model

4)	Evaluate the performance of climatic simulations in the hydrology model on the 
reference period.

Note that evaluation of the input data to the hydrologic model as suggested in 3) and 4) 
should be done after the validation of the climate products as suggested in Appendix E – 
Validation of climate products (Krysanova et al., 2018).
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G.2 Limitations

The limitations of the suggested approach are discussed below.

	� The approach is limited by the availability of a hydrologic baseline. Hydrologic sim-
ulations of an ungauged watershed may still be carried out, but evaluation of their 
performance must rely on other methods.

	� The approach is limited by the quality and the uncertainty of the hydrologic baseline. 
As discussed in Section 4.2 – Hydrologic baseline, the baseline can present errors 
and uncertainty.

	� Thresholds are proposed to represent the minimum performance. Those thresholds 
were proposed by Krysanova et al., (2018), but were not specifically designed for the 
evaluation of assets. Also, “[...] flexibility and pragmatism should be used in applying 
these thresholds, as the potential to achieve a certain model performance is depen-
dent on the quantity and quality of data available, the catchment size, anthropogenic 
impacts, climate conditions and the flow regime (Krysanova et al., 2018).”

	� The approach suggests carrying out differential split-sample testing (KlemeŠ, 1986; 
Refsgaard et al., 2014) as an approach to evaluate model robustness in addition to 
evaluating overall model performance during the period of the hydrologic baseline. 
However, the practitioner must balance the results of the two tests. Krysanova et al., 
(2018) emphasize that “[...] the ability of a model to maintain consistent performance 
across varying climatic periods (e.g. in a differential split-sample approach) is more 
important than extremely high performance in one period, as the level of perfor-
mance across multiple periods is more indicative of the model’s potential consistency 
in a future climate.”
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G.3 Methods

G.3.1 Defining the type of validation

The first step is to define the type of validation: systematic and/or the climatic. Regardless of 
type, the same time period (concomitant years) should be used while carrying out the valida-
tion to avoid inconsistencies due to low natural variability cycles and to climate change signal.

	� The systematic validation can be carried out when the climate data fed into the hydro-
logic model correspond to past climate data. In this situation, the climate data come 
either from meteorological gauges, gridded observations or reanalysis products. 
Validation will be carried out for specific uses 1 and 3.

	� The climatic validation is carried out when the climate data fed into the hydrologic 
model correspond climatically to past climate (climate projections, see Taylor et al., 
2012). In this situation, the climate comes from climate models or weather genera-
tors. It will be carried out for specific uses 2 and 4.

Both types of validation are complementary. The practitioner might need to carry out both 
to support a sound business decision. For example, first evaluate the performance of a 
hydrologic model to represent past hydrology and then evaluate the performance of cli-
matic simulations.

The same time period in the baseline and the simulations should be considered while car-
rying out either the systematic or climatic validation. It will avoid inconsistency due to low 
natural variability cycles and to climate change signal.

G.3.2 Validating the hydrologic simulations

Validation of hydrologic simulation is carried out using the four steps below. In the procedure, 
rejection criteria for a simulation are according to Krysanova et al., (2018). Table G1 suggests 
specific implications regarding the rejection criteria for the valuation of assets. Rejection 
criteria proposed by Krysanova et al., (2018) are acceptable if the practitioner plans to use 
a delta, bias correction or extension method. With the direct method, the rejection criterion 
should to be much more restrictive. Rejection criteria are suggestions from the literature 
and project team. However, practitioners should consider the needs and objectives of their 
assessment and adjust these criteria according to their tolerance limits.
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Table G1 Suggested specific rejection criterion for different hydrologic indices for direct, bias correction, delta 
and extension methods.

Hydrologic indices of interest Rejection criteria for the 
delta, bias correction and 
extension methods. According 
to Krysanova et al., (2018).

Rejection criteria for the 
direct method. According  
to the project team.

Long-term annual average 25% 5%

Inter-annual variability 25% 25%

Nash-Sutcliffe efficiency (NSE) 0.5 0.7

Monthly average 25% 5%-10%

Monthly variability 25% 25%

Monthly correlation coefficient 0.8 0.8

1.	 General validation

1.1.	 Compute performance:

	� Long-term annual average

	� Compute long-term annual average of Qobs & Qsim.

	� Rejection if over/underestimation > 25%

	� Inter-annual variability

	� Compute annual average (AA) of Qobs & Qsim

	� Compute bias in standard deviation of AA-Qobs & AA-Qsim.

	� Rejection if bias > 25%

	� Nash-Sutcliffe efficiency (NSE)

	� For systematic validation:

	� Rejection if NSE < 0.5

1.2.	 Plot graphs:

	� Daily hydrographs (monthly if the hydrologic model is at a monthly time step)

	� Compute daily mean, minimum and maximum of Qobs & Qsim

	� Plot mean-Qobs and mean-Qsim over time. Do the same for minimum and maximum.

	� Is the mean hydrograph well represented by the simulation?

	� Are there problems with the minimum and maximum streamflows of 
the simulation?
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	� Long-term annual average

	� Compute annual average (AA) of Qobs & Qsim.

	� Plot AA-Qobs & AA-Qsim over time.

	� For specific uses 1 and 3:

	� Are there trends in AA-Qobs and AA-Qsim? Do they correspond with 
each other?

	� If there is a trend in either AA-Qobs and AA-Qsim, its possible causes need 
to be studied. See Appendix B – Detection and attribution in the context 
of climate change.

	� If the trends in AA-Qobs & AA-Qsim do not correspond with each other and 
cannot be explained by cause, further investigation is needed.

	� For specific uses 2 and 4:

	� Are there trends in AA-Qobs? What are their causes?

	� Trends in AA-Qsim, if the driving simulation comes from a GCM, need to 
be evaluated with the ensemble approach because of natural variability. 
(Maraun and Widmann, 2018)

2.	� Validation of simulations for every hydrologic indices of interest (Appen-
dix G.3.3 – Defining hydrologic indices)

2.1.	 Compute performance for each hydrologic index

	� Example for monthly average

	� Compute monthly average (MA) of Qobs and Qsim

	� Rejection if over/underestimation > 25%

	� Compute standard deviation of MA-Qobs and MA-Qsim.

	� Rejection if bias > 25%

	� For systematic validation:

	� Compute coefficient of correlation between MA-Qobs and MA-Qsim

	� Rejection if r < 0.8

	� If the simulated dataset does not perform adequately for a hydrologic process, it rep-
resents a limit of the dataset. The dataset should not be used to project this hydrologic 
process in the future.

	� Results can also be compiled visually with heatmaps (see example of heatmaps in 
Appendix E – Validation of climate products).
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3.	 Differential Split-Sample Approach (DSS)

3.1.	� Compute the performance as in 1.1 and 2.1 according to DSS. See Appendix G.3.1 – 
Defining the type of validation for more information on the DSS.

	� If the practitioner carries out the calibration of the model alone, it is recommended to 
run the DSS during the calibration process.

	� If the practitioner does not carry out the calibration alone, the DSS should still be 
carried out by validating the output of the model for two periods with different values 
of the climate parameters.

4.	 Validation at multiple sites and on multiple variables

	� Carry out validation similar 1), 2) and 3) at multiple sites and on multiple variables (e.g. 
snowmelt, evapotranspiration, etc).

G.3.3 Defining hydrologic indices

The list of hydrologic indices can change according to asset type (reservoir/run-of-river), size 
of the watershed, revenue type (energy, power and ancillary services), etc. The list below 
presents indices that are generally of interest to hydroelectricity producers. The practitioner 
can also use the baseline and sensitivity analysis presented in Appendix  H – Sensitivity 
Analysis to identify its own indices or to prioritize the one from the list below.

	� Annual, seasonal and monthly flow volumes (mean, distribution and timing)

	� Inter-annual flow variability

	� Intra-annual flow variability (monthly and/or seasonally)

	� Inter-annual flow persistence

	� Days with flows over a given threshold (e.g. exceeding powerhouse capacity)

	� Multi-year hydrologic drought (function of streamflow)

	� Number and timing of low flow days/weeks
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Appendix H – Sensitivity Analysis

Sensitivity analyses enables the practitioner to get a sense of the how sensitive an asset’s 
value is to the hydrology and/or climate (e.g. +/ – 10% annual inflow). It helps to clarify import-
ant hydrologic/climatic processes underway in the watershed.

It also enables the assessment of the value’s sensitivity to hydrology and/or climate relative 
to other factors (e.g. export prices, discount rates, etc). This exercise can inform decisions 
about how much effort to put into the climate change studies suggested in this Guidebook.

The sensitivity analysis consists of varying some properties of the baseline time series, such 
as mean or extremes, and identifying the resulting impacts on the rest of the modeling chain. 
A similar exercise can be carried out if models are available. Watershed conditions, water 
management scenarios, energy prices, etc. can all be modified in their respective models to 
see the impacts in the rest of the modelling chain.

Appendix G – Validation of hydrologic simulations presents a list of hydrologic indices that 
represent typical important hydrologic processes of interest for the evaluation of assets. 
Appendix E – Validation of climate products presents a similar list for climate indices.

Figure H1 shows an example of sensitivity analysis. In this example, the NPV is more sensi-
tive to variation in annual inflows than to variations in mean revenues. Mean revenues are 
also more sensitive to variation in annual inflows than to variation in low flows.
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A)

B)

C)

Figure  H1 Example of sensitivity analysis with the hydrologic baseline for A) the NPV vs. annual inflow rate, 
B) average annual revenues vs. annual inflow rate and C) average annual revenues vs. low flows.
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Appendix I – Best and good practices 
for the ensemble approach

This appendix provides recommendations for how many scenarios, models and methods 
to include when working with the ensemble approach. Selection may be driven by the goals 
and constraints of the practitioner, for example, time and resource limitations. If existing 
data/results are being reused, it is also necessary to assess whether a given ensemble size 
is sufficient by understanding how many scenarios/models are appropriate for a meaningful 
ensemble. This is a criterion to consider when selecting climate change data (Section 5). 
Table I1 presents both best practices and good practices in terms of the number of sce-
narios/models that should be used. Section 2.3 – Sources of uncertainty and Appendix C – 
GCM selection methods present complementary background information about ensembles 
and uncertainty, and GCM ensemble selection methods, respectively.
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Table  I1 Best and good practices for the ensemble approach. Several of the concepts mentioned here are  
supported by background information in Section 2.3 – Sources of uncertainty.

Best Practices Good Practices

Em
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s 
sc

en
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s

The industry best practice is to use all available emis-
sions scenarios from the most recently published group 
of emissions scenarios available.

This is particularly important for longer lead times (e.g. 
> 50 years), where the choice of emissions scenario is 
likely to have a more significant impact on hydrologic 
projections (Ignazio Giuntoli et al., 2018).

A good practice to use at least two emissions scenarios: 
a moderate and a business-as-usual scenario (for 
CMIP5 these are RCP4.5and RCP8.5; respectively Van 
Uytven and Willems, 2018).

For short lead times (< 15 years), it may be acceptable 
to use only one emissions scenario, because the climate 
signal may not yet have emerged (Section 2.3 – Sources 
of uncertainty).

If it is not possible to use newly published emissions 
scenarios, older scenarios are acceptable.
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The industry best practice has traditionally been to use 
as many GCMs as are readily available (the newest ver-
sions of the models if possible), because no single GCM 
consistently outperforms all others (IPCC, 2013).

However, a few studies have suggested that it may 
be better to select certain models (Chen et al., 2016; 
Maraun et al., 2017; Maraun and Widmann, 2018). This 
is discussed further in Appendix C – GCM selection 
methods

The challenge is that it is unclear how to select the best 
models and the results of sub-selections are difficult to 
interpret (Maraun et al., 2017). In the past, selection has 
sometimes been undertaken with limited information 
regarding quality and reliability (Her et al., 2019); hence, 
caution with selection is advised.

A good practice is to use fewer models (including older 
versions of the model if that is all that is available); how-
ever, it is crucial that a study not be conducted with too 
few models (see Appendix C – GCM selection methods).

Unfortunately, there are few publications available that 
identify an appropriate minimum number of GCMs.

The IHA recommends the use of three locally-credible 
GCM or RCM-based climate projections (optimistic, 
central, pessimistic; (IHA, 2019).

Wang et al., (2018) found that the projections from 
10 climate models are sufficient, and that little improve-
ment is gained with more than 10 models. However, 
this assessment was based on covering the majority of 
the uncertainty.

Assessments based on other criteria could suggest a 
different minimum number of GCMs (Appendix C – GCM 
selection methods).

When several simulations of the same of the same GCM 
with the same emissions scenario (realizations) are avail-
able, a good practice is to select the first realization.

H
yd

ro
lo

gi
c 

M
od

el
s 

an
d 

Po
st

-p
ro

ce
ss

in
g

The hydrologic model and post-processing steps of the 
modeling chain can be important contributors to total 
uncertainty (Section 2.3 – Sources of uncertainty).

Therefore, it is ideal to use several hydrologic models 
(e.g. Giuntoli et al., 2015; Hattermann et al., 2018) and 
post-processing methods (e.g. Chen, Brissette and 
Leconte, 2011; De Niel, Van Uytven and Willems, 2019).

Regardless of the number of models used, it is important 
that key processes be represented and that the model 
be well calibrated (Krysanova et al., 2018).

It is often not feasible to use an ensemble of hydrologic 
models and post-processing methods. It may instead be 
more valuable (and more manageable) to use the correct 
type of model/method (Appendix F – Selection and 
calibration of a hydrologic model), with appropriate cali-
brations based on high-quality data (Chen et al., 2013b; 
Gao et al., 2019; Pechlivanidis et al., 2011).

The practitioner’s experience with the hydrologic model 
is important (also see appendices E-G).
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Appendix J – Case Studies



Brookfield Renewable Case Study
Application of the Delta Method to the Penobscot and Susquehanna Watersheds for Future Climate 
Change Hydrology Scenarios 
By: Nelson Jia, Bruno Benedetti and Andy Davis

Approach
The delta method involves a perturbation of the baseline using the relative or absolute change between the simulated reference 

and future periods within a given simulation integrating climate change. The perturbation is based on a pre-computed climate 

change impacted hydrologic scenario. The scenario is the product of a previously completed case study and was subjected to 

validation techniques to ensure it is applicable to the hydrology baseline.

Context
In line with its Environmental Social Governance program and 

its dedication to investing in renewable energy, Brookfield 

Renewable values the impact of climate change on the power 

generation potential of hydroelectric assets. The purpose of 

the case study is to show how the delta method described 

in Ouranos’s Guidebook on Valuation of Hydropower Assets 

and Climate Change Physical Impacts (Fournier et al., 2020) 

can assist in developing streamflow projections under climate 

change scenarios. The case study was conducted on the 

Penobscot and Susquehanna watersheds, where Brookfield 

Renewable owns and operates many hydropower assets. 

Objective

	� Develop streamflow projections to show how 

climate change impacts flow in the Penobscot and 

Susquehanna watersheds.

	� Demonstrate the applicability of the delta method and 

its ability to apply a pre-computed climate change hydro

logy scenario to a hydrology baseline and obtain future 

climate change streamflow projections.



Results

The case study was applied to two American watersheds: 

Penobscot (New England region) and Susquehanna (Atlantic 

seaboard). Literature review yielded two studies presenting 

pre-computed climate change hydrology scenarios: Hayhoe 

(2007) and Johnson (2015). The Hayhoe article computes its 

climate change hydrologic scenario with an estimated increase 

in runoff, while the Johnson article computes its climate change 

hydrologic scenario with an estimated increase in flow.

The pre-computed simulations were assessed by compar-

ing them with the historical baseline flows from Brookfield 

Renewable, based on their average flows and standard devi-

ations. To confirm the adequacy of the pre-computed cli-

mate change hydrology simulations, the difference between 

the average flows and between the standard deviations 

should each be less than 25%. 

For the application of the Johnson (2015) article, the 

pre-computed climate change hydrologic scenarios came 

from the Merrimack and the Susquehanna watersheds, 

which were applied to the Penobscot and Susquehanna 

watershed baselines, respectively. The Merrimack watershed 

scenario passed the validation test, with differences in aver-

age streamflow of less than 15% and in standard deviation 

of approximately 20% compared to the Penobscot water-

shed’s historical baseline flow. The Susquehanna watershed 

scenario was also deemed adequate, with a difference of 

approximately 25% between the historical baseline flows. 

However, the Hayhoe (2007) scenario was deemed inade-

quate, as the differences exceeded 25%.

Once the Johnson (2015) article results were successfully vali-

dated, the delta method was applied to the historical Penobscot 

and Susquehanna watershed baselines to obtain future climate 

change hydrologic projections. The average flow perturbations 

applied to the Penobscot and Susquehanna watersheds were 

+0.4% and +0.2%, respectively.

These estimated increases in flow represent valuable infor-

mation that will help Brookfield Renewable make long-term 

business decisions related to investments, contract renew-

als, asset refurbishments and environmental interventions. 

However, a more in-depth analysis should be conducted to 

obtain more precise results. 

Lessons learned

	� The application of the case study worked best when using 

flow rather than runoff. Additionally, the watersheds 

used for the pre-computed and the baseline scenarios 

should be comparable to obtain valid results.

	� The granularity and details of the applied perturbation 

depend on those of the selected studies. 

	� The delta method is fast, easy and convenient to use. 

However, the novice practitioner can get lost in the 

literature review (i.e. finding studies to establish the 

perturbation factor). The method would benefit from the 

establishment of a library of relevant studies.

	� Criteria to establish hydrologic similarity between water-

sheds are very simple, yet only a limited number of ref-

erence watersheds is available. This restricts the extent 

to which the method can be applied. The method would 

gain from further studies on additional basins.

Reference
This case study was developped as part of the Guidebook: Fournier, E., Lamy, A., Pineault, K., Braschi, L., Kornelsen, K., Hannart, A., Chartier, I., Tarel, G., Minville, M. 
et Merleau, J. (2020). Valuation of Hydropower Assets and Climate Change Physical Impacts A Guidebook to Integrate Climate Data in Energy Production for Value 
Modelling, Ouranos, Montréal, 208 pages.

Hayhoe, K., Wake, C. P., Huntington, T. G., Luo, L., Schwartz, M. D., Sheffield, J., ... & Troy, T. J. (2007). Past and future changes in climate and hydrological indicators 
in the US Northeast. Climate Dynamics, 28(4), 381-407. https://doi.org/10.1007/s00382-006-0187-8

Johnson, T., Butcher, J., Deb, D., Faizullabhoy, M., Hummel, P., Kittle, J., … & Sarkar, S. (2015). Modeling streamflow and water quality sensitivity to climate change and urban 
development in 20 US watersheds. JAWRA Journal of the American Water Resources Association, 51(5), 1321-1341. https://doi.org/10.1111/1752-1688.12308



Hydro-Quebec Case Study
Climate Change Impacts on Hydro-Quebec’s Annual Water Inflow, Evolution of the Mean and Variability
By: Guillaume Jean Tarel1, Catherine Guay2, Marie Mainville2

Approach
As part of the cQ2 project, CMIP5 climate simulations were used as 

inputs to a hydrological model (HSAMI) to produce simulations of 

future flows for several dozen sites in the HQP system. Two radiative 

forcing trajectory scenarios were taken into account (RCP 4.5 and 8.5). 

The initial step, adequacy analysis, validates whether the avail-

able data adequately reproduce the observed history (control 

period 1971–2000). The analysis showed that: 

	� the annual means and inter-annual variability, represented 

by the standard deviation, are suitable variables. 

	� the cumulative variables over several years (for example the 

sequences of years of low water levels) are not adequately 

represented by the available data. 

In the light of these findings, the changes in annual means and 

inter-annual variability were therefore calculated using a delta 

approach, comparing the variables between the future period 

and the reference period. Changes in the sequences of years of 

low water levels have not been studied. 

Context
In a 2015 article, Guay et al. used the CMIP3 set to 

show, among other things, a probable future increase 

in mean annual streamflow in Quebec (Guay et al., 

2015). To complete these results and assess the impact 

of climate change on the hydropower fleet, it is also 

important to characterize the probable evolution of the 

variability of inflows (HQD, 2019). This analysis is made 

using the simulations from the cQ2 project based on 

the CMIP5 climate set.

Objective

	� Compare results obtained with CMIP5 to the previous 

simulations derived from CMIP3.

	� Analyze the evolution of variability by 2050.

	� Evaluate whether the available hydrological 

simulations accurately represent the sequences 

of years characterized by low runoff. 

1 Hydro-Québec Production, 2 Centre de recherche d’Hydro-Québec



Results

Note: The results below are presented in terms of the probable future change in annual mean flows. As the conversion efficiencies 

of the flows into energy are vary between different facilities, it is not possible to directly transpose the evolution of the flows into 

an energy evolution. Moreover (see above), the evolution of the sequences during years of low water levels has not been studied.

In terms of flows, the annual means show an increase 

between the control period (1971–2000) and the future 

period (2036–2065). The figure below provides more detail 

about the most important basins (for the RCP 4.5 sce-

nario). The changes are of the same order of magnitude as 

obtained in Guay et al. (2015). As the mean increases, so do 

the standard deviations in the case of RCP 4.5. Even in the 

case of RCP 8.5, the standard deviations increase consider-

ably more than the means. This results in an increase in the 

variability of flows from year to year.

Lessons learned

	� This type of assessment is not trivial and there is a 

relatively high risk of making faulty conclusions using 

inappropriate data (Fournier et al., 2020) 

	� Conducting an adequacy analysis of simulations, compar-

ing the simulations with available history, is essential and 

should be recommended to all users. Relying on external 

expertise or the Ouranos Guidebook on Valuation of 

Hydropower Assets and Climate Change Physical Impacts 

(Fournier et al., 2020) is also recommended.

	� For Hydro-Quebec Production, the analysis of the avail-

able simulations showed that it is necessary to further 

study the sequences of years of low water levels. 

Reference
This case study was developped as part of the Guidebook: Fournier, E., Lamy, A., Pineault, K., Braschi, L., Kornelsen, K., Hannart, A., Chartier, I., Tarel, G., Minville, M. 
et Merleau, J. (2020). Valuation of Hydropower Assets and Climate Change Physical Impacts A Guidebook to Integrate Climate Data in Energy Production for Value 
Modelling, Ouranos, Montréal, 208 pages.

Guay, C., Minville, M., and Braun, M. (2015). A global portrait of hydrological changes at the 2050 horizon for the province of Québec. Canadian Water Resources 
Journal, 40(3), 285–302. https://doi.org/10.1080/07011784.2015.1043583

Hydro Québec Distribution. (2019, Novembre 1). Complément d’information du plan d’approvisionnement 2020-2029. http://publicsde.regie-energie.qc.ca/pro-
jets/529/DocPrj/R-4110-2019-B-0009-Demande-Piece-2019_11_01.pdf 



Manitoba Hydro Case Study
Exploring Climate Change Considerations for Evaluating Generating Station Upgrades 
Contact details: Kristina Koenig, kkoenig@hydro.mb.ca

Approach
Starting with an ensemble of 40 climate model simulations (Manitoba 

Hydro, 2020), projected changes in precipitation, minimum, and max-

imum temperature were combined with a climatic baseline to gener-

ate future climate scenarios for the 2050s across the Nelson-Churchill 

watershed (1.4 million km2). Future climate scenarios were then used 

to drive WATFLOOD distributed hydrologic models to produce future 

streamflow scenarios. 

Uniquely positioned with Long Term Flow Data (LTFD; 106 year 

hydrologic baseline), the approach was tailored to use LTFD, which is 

fundamental to resource planning studies. WATFLOOD streamflow 

scenarios were used to develop a set of quantile-based future flow 

correction factors (deltas) to assess changes in means, extremes 

and variability. Deltas were applied monthly, seasonally and semi-an-

nually to generate future LTFD scenarios.

To best utilize computational and staff resources, cluster analysis 

was used to select a subset of six future LTFD scenarios that rep-

resent a broad range of energy-production impacts. The subset 

was used to drive a suite of resource planning models to evaluate 

energy and economic impacts of various upgrade options under 

future streamflow scenarios.

Context
Manitoba Hydro provides electricity to over 580,000 custom-

ers throughout Manitoba and exports electricity to whole-

sale markets in Canada and the United States. An average 

of 96 per cent of the electricity it generates annually comes 

from 15 hydroelectric generating stations, primarily on the 

Winnipeg, Saskatchewan and Nelson rivers. 

With guidance from Ouranos, Manitoba Hydro Water Resources 

Engineering and Resource Planning professionals collaborated 

to explore the integration of climate change scenarios into 

existing hydrological modelling and resource planning mod-

elling frameworks. This exercise merged climate science with 

industry practices to explore the topic pragmatically.

Objective

	� Improve upon previous techniques to generate future 

climate change impacted streamflow scenarios.

	� Generate future streamflow scenarios and test how 

these may be used in resource planning.

	� Explore the impact of future streamflow scenarios on a 

potential generating-station upgrade.

	� Investigate the process to integrate future streamflow 

scenarios into resource planning models.



Lessons learned

	� Early collaboration between areas of expertise (climate 

science, hydrology, energy-production modelling) 

was instrumental in project execution and in refining 

the methodology.

	� While many sources of uncertainty exist in hydrologic 

and energy modelling, exploring the scope of impacts 

coming from future climate scenarios can be a valuable 

sensitivity analysis.

	� While climate change impacts on streamflow can affect 

project economics, other factors, such as capital costs, 

energy prices and discount rate were found to be more 

significant factors.

	� Multi-year hydrological drought plays an important role 

in long-term resource planning. Understanding the cli-

mate change impacts on these unique extreme events is 

of interest for future work.
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et Merleau, J. (2020). Valuation of Hydropower Assets and Climate Change Physical Impacts A Guidebook to Integrate Climate Data in Energy Production for Value 
Modelling, Ouranos, Montréal, 208 pages
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Results

WATFLOOD hydrologic models were developed and cali-

brated to a range of historical conditions. Due to uncertain-

ties in simulating future regulation, models were configured 

to simulate natural conditions at key flow index locations. 

Adjustment factors from quantile maps, comparing base-

line to future (2050s; 2040-2069) WATFLOOD output, were 

applied to create future LTFD scenarios. Due to the LTFD 

record length, a de-trending/re-trending approach was fol-

lowed, but this step remains an area for further study.

Overall, the ensemble of 40 future LTFD scenarios tend towards 

wetter conditions, but some scenarios indicate decreasing 

flows. Using a screening level energy production model, LTFD 

scenarios were evaluated for changes in mean annual energy 

production. Results show that flow increases generally lead to 

increases in energy production but begin to plateau as flows 

approach powerhouse capacities. A cluster analysis algorithm 

was used to select a sub-set of six scenarios for further anal-

ysis, capturing 97.3% of the ensemble range in future energy 

production change. The sub-set is important since it is com-

putationally and time prohibitive to evaluate all scenarios in a 

detailed resource planning modelling framework.

The sub-set of future LTFD scenarios were run through a 

suite of resource planning tools. LTFD scenarios were first 

run through a coarser resolution system wide production 

model which simulates reservoir operations, electricity 

generation and export revenue using inputs such as a load 

forecast, export price forecast and operational limitations. 

Outputs from this model inform a production model with 

representation of individual generating station unit opera-

tions. For exploratory purposes, climate change impacts are 

considered in isolation of other effects, as only LTFD and 

upgrade options were changed from baseline conditions.

This process allows testing of various generating station 

upgrade options for comparison against one another under 

baseline conditions and with climate change. In this prelim-

inary work, upgrade options were found to be economically 

robust using baseline LTFD and when future climate change 

scenarios were integrated.



Ontario Power Generation Case Study
The Impact of Climate Change on a Redevelopment Scenario
By: Kurt C. Kornelsen

Approach
To better isolate the impacts of climate change from other influences, such as changes in reservoir management, OPG decided to implement 

the full modelling chain and climatic baseline. Downscaled and bias-corrected GCM scenarios for temperature and precipitation were pro-

vided by Ouranos and used to simulate daily flow and energy production from the generating station. A financial model was used to determine 

the relative impact that climate-driven flow changes could have on station valuation. Operational or physical adaptations were not considered.

Context
Business cases for the construction or redevelop-

ment of generating stations need to reflect revenues 

and costs over the long lifespans of hydropower 

assets. This case study involved a nearly end-to-end 

assessment of potential changes in streamflow and 

energy production caused by climate change and the 

impact these could have on the current costs of a 

hypothetical project.

Objective
Develop an understanding of the impacts of climate 

change on the energy production of an individual 

station and their relative influence on the valuation 

of station redevelopment.



Results

	� Several iterations of the hydrologic model were used to 

enhance consistency with historical data and simulation 

based on a climatic baseline, resulting in a well-perform-

ing modelling chain with an inflow bias of less than 1% 

compared to historical values. This was achieved by 

calibrating the hydrologic model over a longer historical 

period of 62 years and by using the same base-gridded 

precipitation product used as reference for climate-data 

bias correction.

	� Mean annual flow was not found to be affected much at this 

site as a result of climate change (i.e. few significant trends), 

but there is greater year-to-year variability in flow, as well 

as more frequent high- and low-flow years, although they 

are of similar magnitude to historical records (Figure). Flow 

changes had a corresponding impact on energy production.

	� The asset valuation was sensitive to many factors unre-

lated to climate, including investment cost and discount 

rate. Some of these financial factors were found to 

affect projected asset value more than the anticipated 

variations in energy production due to climate change. It 

should be noted that physical or operational adaptation 

measures were not considered as part of this case study 

and would impact project costs and energy production. 

	� A sensitivity analysis on energy-production values revealed 

that the valuation was more sensitive to lower energy 

production than it was to higher energy production.

Lessons learned

	� Several models are involved in the modelling chain that 

produced the final outcome. It was helpful to put all the 

pieces together, using acceptable-quality models, and 

then perform a sensitivity analysis on the whole chain to 

identify which models most influenced the final results. This 

enabled us to better focus our efforts and refine the few 

models that had the biggest impact on the final outcome.

	� Consistency proved to be very important. It was abso-

lutely necessary to recalibrate our hydrologic model 

using the same gridded precipitation product used as 

reference for the GCM bias-correction method, as the 

original hydrologic model was calibrated with different 

datasets. The shared baseline removed some signifi-

cant initial biases.
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